Scientists use a custom-designed machine and a reprogrammed Xbox controller to create atomically precise lenses

Dec 07, 2012 by Justin Eure  

Unleashing some of the most promising energy technologies of tomorrow—from electric vehicle fuel cells to photovoltaics—hinges upon understanding tiny structures spanning just billionths of a meter. One way to explore this critical nanoscale world is by sending high-intensity x-ray beams through materials, similar to the way doctors capture images of internal bone structure using large x-ray devices. The challenge with fringe physics, however, is that focusing that penetrating power on just a single nanometer takes an entirely different caliber of lens.

Using a massive, custom-built deposition device, Brookhaven Lab scientist Ray Conley and his team are able to grow special lenses one at a time. As intense x-rays pass through these multilayer Laue lenses (MLL), the light diffracts and bends toward a single point. Creating these atomically precise optics is no small feat, and Conley continues to tweak the process of growing light-bending films and carving them into precise lenses.

Check out the video above for an introduction to the lens-growing device used at Brookhaven Lab, and get an insider's look at the most unexpected tool of the trade: a wireless Xbox controller.

This video is not supported by your browser at this time.

Inside the room-length deposition system, a transport car travels through a vacuum-sealed chamber, collecting the lens layers brick by atomic brick to form a completed MLL. Initially, that car could only be manipulated by repeatedly entering commands directly into a nearby computer. To increase efficiency and provide tactile control while he works, Conley's team reprogrammed an Xbox controller to move the transport car at variable speeds based upon which analog joystick he uses, control plasma deposition with different buttons, and even provide variable rumble feedback.

The completed MLLs will be deployed on beamlines at Brookhaven Lab's forthcoming National II, one of the world's most advanced light sources, to reveal unparalleled details of nanomaterial structures.

Explore further: Chemist develops X-ray vision for quality assurance

Related Stories

Reducing stress in multilayer laue lenses

Sep 21, 2011

Multilayer Laue lenses (MLLs) developed at the U.S. Department of Energy Office of Science’s Advanced Photon Source (APS) focus high-energy x-rays so tightly they can detect objects as small as 16 nanometers ...

Engineers give industry a moth's eye view

Nov 26, 2007

When moths fly at night, their eyes need to capture all the light available. To do this, certain species have evolved nanoscopic structures on the surface of their eyes which allow almost no light to reflect off the surface ...

Brookhaven Lab wins R&D 100 Award for X-ray focusing device

Jul 26, 2006

The U.S. Department of Energy's (DOE) Brookhaven National Laboratory has won a 2006 R&D 100 award for developing the first device able to focus a large spread of high-energy x-rays. The device, called a Sagittal Focusing ...

Recommended for you

New approach to form non-equilibrium structures

6 hours ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

7 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

12 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

12 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0