The dance of quantum tornadoes

Dec 04, 2012

Tornado-like vortexes can be produced in bizarre fluids which are controlled by quantum mechanics, completely unlike normal liquids. New research published today in the journal Nature Communications demonstrates how massed ranks of these quantum twisters line up in rows, and paves the way for engineering quantum circuits and chips measuring motion ultra-precisely.

The destructive power of rampaging tornadoes defeats the human ability to control them. A Cambridge team has managed to create and control hundreds of tiny twisters on a . By controlling where electrons move and how they interact with light the team created a marriage of electrons and photons that form a new called a ''.

The results come from a collaboration between the experimental team in the NanoPhotonics Centre led by Professor Jeremy Baumberg and the theoretical quantum fluids group of Natalia Berloff.

Dr Berloff says: "Being half-light and half-matter these particles are feather-light and move quickly around, sloshing and cascading much like water in a mountain river."

Most excitingly, the team says, these are actually large, the width of a human hair, and the effects can be seen though a normal .

Using ultra-high quality samples produced by a team from Crete the researchers exerted unprecedented control on possible flows they can arouse within this liquid: forcing it to flow down a hill, over a mountainous terrain, forming quiet lakes and wildly raging quantum oceans.

By creating polaritons at the top of several hills and letting them flow downhill the group was able to form regular arrays of hundreds of tornadoes spiralling in alternating directions along well-defined canyons. By changing the number of hills, the distance between them and the rate of polariton creation the researchers could vary the separation, the size, and number of the twister cores, achieving a long held dream of creating and controlling macroscopic quantum states.

But quantum mechanics responsible for creating such fluids makes quantum tornadoes act even more intriguingly than their classical counterparts. Quantum vortices can only swirl around in fixed 'quantised' amounts and the liquids at the top of the various hills synchronize as soon as they mix down in the valleys - just two examples of that can now be seen directly.

Quantum tornadoes can be reconfigured on the fly and pave the way to widespread applications in the control of quantum fluid circuits. Creating arbitrary configurations of polariton liquids leads to even more complicated quantum superpositions and lays groundwork for polariton interferometers (devices which measure small movements and surface irregularities) that respond extremely sensitively to even the slightest changes in the environment.

Explore further: Serious security: Device-Independent Quantum Key Distribution guards against the most general attacks

More information: The paper 'Geometrically locked vortex lattices in semiconductor quantum fluids' will be published in the 4 December edition of Nature Communications. doi: 10.1038/ncomms2255

Related Stories

Seeing quantum mechanics with the naked eye

Jan 09, 2012

(PhysOrg.com) -- A Cambridge team have built a semiconductor chip that converts electrons into a quantum state that emits light but is large enough to see by eye. Because their quantum superfluid is simply ...

Pure mathematics behind the mechanics

Feb 07, 2008

Dutch researcher Peter Hochs has discovered that the same effects can be observed in quantum and classical mechanics, if quantisation is used.

Recommended for you

Quantum holograms as atomic scale memory keepsake

1 hour ago

Russian scientists have developed a theoretical model of quantum memory for light, adapting the concept of a hologram to a quantum system. These findings from Anton Vetlugin and Ivan Sokolov from St. Petersburg ...

1980s aircraft helps quantum technology take flight

Oct 20, 2014

What does a 1980s experimental aircraft have to do with state-of-the art quantum technology? Lots, as shown by new research from the Quantum Control Laboratory at the University of Sydney, and published in Nature Physics today. ...

Quantum test strengthens support for EPR steering

Oct 14, 2014

Although the concept of "steering" in quantum mechanics was proposed back in 1935, it is still not completely understood today. Steering refers to the ability of one system to nonlocally affect, or steer, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

StarGazer2011
1 / 5 (1) Dec 05, 2012
By controlling where electrons move and how they interact with light the team created a marriage of electrons and photons that form a new quantum particle called a 'polariton'.

Really? I mean they created an actual new particle? Thats pretty special! Or is it more a BEC type 'particle'? Which is less special but still amazing.