Protein signaling between soybean root hairs, bacteria reveals core cellular processes

Dec 13, 2012
Protein signaling between soybean root hairs, bacteria reveals core cellular processes
The root of soybean proteomics: Image of a nodule formed on a soybean root hair.

(Phys.org)—Understanding what happens to a soybean root hair system infected by symbiotic, nitrogen-fixing soil bacteria, Bradyrhizobium japonicum, could go a long way toward using this symbiosis to redesign plants and improve crop yields, benefitting both food and biofuel production. Because of their extensive genomes, it is especially difficult to use conventional proteomic technologies to get meaningful information from plants. With the availability of a complete soybean genome, soybean root hairs represent an excellent model for the study of single-cell systems biology.

Legume root hairs primarily are involved in water and nutrient uptake from the soil but also are the dominant infection site of symbiotic rhizobia. This infected area forms a novel organ—the nodule—where bacteria fix nitrogen for the host, acting as built-in fertilizer. At EMSL, scientists, as part of an onging collaboration with the Stacey Laboratory, employed the ultra-sensitive -Fourier transform platform to characterize the soybean root hair proteome and determine root hair cellular signaling cascade responses to rhizobial colonization and infection. Stripped roots (with no root hairs), non-inoculated soybean root hairs, and inoculated (with B. japonicum) were watched for changes over a 72-hour period.

Nine time points were analyzed separately then combined to establish the root hair reference proteome map. The process cataloged more than 5700 proteins, some specific to the root hair, involved in cell functionality, such as nutrient uptake. The scientists also used EMSL's ultra-sensitive phosphoproteomic platform coupled with eight-plex iTRAQ methodology, which labels all peptides in up to eight different biological samples, to track how the cell's defense system was suppressed to allow nodules to form on roots. Signals between root hair cells and bacteria orchestrate complex and rapid cellular changes. Thus, these studies are important for piecing together the necessary genetic and protein targets that compose this beneficial symbiotic relationship.

Explore further: Automating the selection process for a genome assembler

More information: Brechenmacher L, et al. Identification of soybean proteins from a single cell type: The root hair. Proteomics 12(22):3365–3373, (2012). DOI: 10.1002/pmic.201200160 3365

Nguyen T. et al. Quantitative phosphoproteomic analysis of soybean root hairs inoculated with Bradyrhizobium japonicum. Molecular and Cellular Proteomics 11(11):1140-1155, (2012). DOI: 10.1074/mcp.M112.018028

add to favorites email to friend print save as pdf

Related Stories

Not just another brick in the (plant cell) wall

Jun 17, 2011

(PhysOrg.com) -- In a new study revealing key steps for controlling plant growth, researchers have shown how the assembly of components of the plant cell wall regulates growth of root hairs. Root hairs are ...

How roots find a route

Feb 28, 2008

Scientists at the John Innes Centre in Norwich have discovered how roots find their way past obstacles to grow through soil. The discovery, described in the forthcoming edition of Science, also explains how ...

The sweet growth of plant cells

Jun 16, 2011

An international collaboration team unravels the fundamental role that carbohydrates play in the root hairs of Arabidopsis thaliana and shows how cell growth is modulated in this species.

Herbicide may affect plants thought to be resistant

Nov 22, 2011

Purdue University researchers have discovered a fine-tuning mechanism involved in plant root growth that has them questioning whether a popular herbicide may have unintended consequences, causing some plants to need more ...

A new plant-bacterial symbiotic mechanism promising

Jul 16, 2007

The growth of most plants depends on the presence of sufficient amounts of nitrogen contained in the soil. However, a family of plants, the legumes, is partially free of this constraint thanks to its ability to live in association ...

Recommended for you

Studies steadily advance cellulosic ethanol prospects

12 hours ago

At the Agricultural Research Service's Bioenergy Research Unit in Peoria, Illinois, field work and bench investigations keep ARS scientists on the scientific front lines of converting biomass into cellulosic ...

User comments : 0