Researchers design potential blood thinner that also unmasks cancer cells

Dec 06, 2012 by Lindsay Taylor Key
Researchers design potential blood thinner that also unmasks cancer cells
Rafael Davalos, Pavlos Vlachos, Daniel Capelluto, and Carla Finkielstein designed small molecules modeled after a naturally occurring protein that may have potential to be developed into an efficient, safer blood thinner.

(—Virginia Tech researchers have discovered a potential way to create a new kind of anticoagulant drug commonly called a blood thinner. 

Blood thinners are important for people with or who are at risk for heart attacks and strokes—leading causes of death in the United States.

But prescription blood thinners have long-lasting effects in the body and may cause unwanted side effects, including bleeding, according to Daniel Capelluto and Carla Finkielstein, associate professors of biological sciences in the College of Science who are affiliated with the Fralin Life Science Institute and the Virginia Tech Center for .

Working with Rafael Davalos, an associate professor of biomedical engineering, and Pavlos Vlachos, a professor of mechanical engineering, both in the College of Engineering, the scientists created a microfluidic device that emulates flow conditions within a blood vessel to explore the therapeutic role of a naturally occurring protein called Disabled-2, which ultimately prevents blood from clotting.

From there, the scientists designed small molecules modeled after Disabled-2 that may have the potential to be developed into an efficient, safer blood thinner.

The discovery is reported in the Nov. 2, issue of the .

Cardiovascular disease is the leading cause of death in the United States and stroke is the fourth most common, according to the American Heart Association.

There are several advantages of the proposed new drug, researchers say, including its multi-targeted action, specificity, and rapid clearance from the blood stream after its therapeutic action is completed.

Because it is delivered via nanoparticles, it bypasses the immune system and causes no secondary effects in the patient—characteristics that may impact cancer treatment.

"When you have a metastatic process and are moving through your bloodstream, the doesn't seem to recognize them as bad cells. This is largely due to platelets that coat the cancer cells," Finkielstein said. "Our drug exposes the cancer cells to the immune system by essentially unmasking them. Thus, the drug can be used along with other technologies for ."

The drug is linked to two patents owned by the researchers and Virginia Tech.  Research was funded by the and a Fralin Life Science Institute seed grant.  Investigators are also associated with the Multiscale Bio-Engineered Devices and Systems group within the Institute for Critical Technology and Applied Science.

Explore further: X-ray study may aid in designing better blood pressure drugs

Related Stories

Blood cell breakthrough could help treat heart disease

Apr 27, 2012

( -- Scientists at the University of Reading have made a groundbreaking discovery into the way blood clots are formed, potentially leading to the development of new drugs to treat one of the world's ...

Recommended for you

Dead feeder cells support stem cell growth

14 hours ago

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Dec 07, 2012
In regards to the cancer aspect of this article, they're barking up the wrong tree. The cure for cancer is already known: It is called cannabis, and it is illegal, thanks to stupid governments. Nevertheless, do yourself a favor and look into "Rick Simpson oil" and the first-hand testimonials of its users who overcame cancer called "incurable" by mainstream medicine (another stupid aspect of our society). These scientists mentioned in the article will never be able to develop a cancer fighting drug because there will be obstacles thrown in front of their research efforts. In the rare event that they succeed, that drug will also be made illegal by stupid governments, and/or they will be put on "quack" lists.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.