New platform developed to measure and exploit optomechanical interactions

December 13, 2012
New platform developed to measure and exploit optomechanical interactions
A pair of nanobeams is held side-by-side and separated by a nanoscale gap, with one beam supporting a mechanical mode, and the other supporting a confined optical mode. The properties of the optical mode of the beam on the left are concentrated in the nanoscale gap in-between the beams, ensuring a strong radiation pressure interaction with the mechanical mode in the beam on the right. The platform enables nearly independent design of the optics and the mechanics.

(Phys.org)—Researchers from the NIST Center for Nanoscale Science and Technology and Caltech have developed a new design platform for measuring and exploiting strong interactions between light confined in a nanoscale structure and an adjacent nanomechanical system. The versatile platform opens new approaches for fabricating sensitive light detectors and for converting wavelengths for use in quantum information science. Previously, the Caltech team used silicon "optomechanical crystals" in which radiation pressure from light drove mechanical vibrations within a single, doubly-clamped silicon nanobeam. In the new work, the CNST-Caltech collaborators developed a design for observing similar effects in silicon nitride, which has a much broader optical transparency window than silicon, but for which radiation pressure interactions within a single nanobeam are expected to be much weaker.

The new approach uses a pair of nanobeams held side-by-side and separated by a nanoscale gap, with one beam supporting a mechanical mode which has a specific vibration pattern and frequency, and the other supporting a confined optical mode which has a specific spatial field distribution and optical frequency. Crucially, while the properties of the optical mode are largely controlled by only one of the two beams, it is concentrated in the small region in-between the beams, ensuring that the radiation pressure interaction with the mechanical mode in the other beam is strong. Electromagnetic simulations show that the optomechanical interaction strength increased by nearly a factor of three relative to the single beam case.

An important aspect of the new platform is that it enables near-independent design of the optics and the mechanics, so a wide range of new functionalities may be possible. In particular, the team is working on geometries in which two optical beams operating at widely different wavelengths are coupled to a mechanical beam held in-between them. Such devices are expected to enable wideband optical-to-optical and even microwave-to-optical frequency conversion, which would be significant advances in this field.

Explore further: Technological breakthrough in Silicon Photonics: Intel Silicon-based Optical Modulator Could Run Faster Than 1GHz

More information: Davanço, M. et al., Slot-mode-coupled optomechanical crystals, Optics Express 20, 24394–24410 (2012).

Related Stories

Nanoscale zipper cavity responds to single photons of light

June 4, 2009

Physicists at the California Institute of Technology have developed a nanoscale device that can be used for force detection, optical communication, and more. The device exploits the mechanical properties of light to create ...

Laser light used to cool object to quantum ground state

October 5, 2011

For the first time, researchers at the California Institute of Technology (Caltech), in collaboration with a team from the University of Vienna, have managed to cool a miniature mechanical object to its lowest possible energy ...

Recommended for you

The sound of music, according to physicists

July 30, 2015

Joshua Bodon is sick of hearing "Somewhere Over the Rainbow." More specifically, he's sick of hearing one 25-second clip of the song repeated more than 550 times.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.