Photons emitted by quantum dots can be made indistinguishable through quantum frequency conversion

Dec 20, 2012
The quantum frequency conversion system uses two pump lasers whose frequency difference is matched to the difference between the two input photon streams, causing the new photons from a nonlinear crystal to be emitted at exactly the same frequency.

(Phys.org)—An international collaboration led by researchers from the NIST Center for Nanoscale Science and Technology has demonstrated the ability to make photons emitted by quantum dots at different frequencies identical to each other by shifting their frequencies to match. This "quantum frequency conversion" is an important step for making solid-state, single photon sources, including quantum dots, more useful light sources for photonic quantum information science.

Quantum dot sources are desirable due to their high brightness, stability, and amenability to scalable fabrication technology, but frequency variations arising from nonuniform device fabrication have limited their usefulness. Previous research has focused on tuning the sources themselves, for example by inducing strain or by varying the electrical and optical fields surrounding the structures. In their new approach, the CNST-led team uses a fundamentally different approach – manipulating the photons after they are generated, rather than altering the sources.

As reported in the October 5, 2012 issue of Physical Review Letters and featured in the November issue of Physics Today, the experiment uses photons emitted from a semiconductor quantum dot at two different frequencies which are determined by two of the dot's different energy states. The team demonstrated that the photons can be converted to the same frequency, or color, using quantum , a process in which each a single photon stream is combined with light from a much stronger pump laser in a which outputs photons at a frequency that is the sum of the two inputs. Two pump lasers are used, with the frequency difference between them set to match the difference between the two input photon streams, causing the new photons to be at exactly the same frequency. An interference measurement is used to confirm that the frequency-converted photons have become identical. Since the current work uses relatively large nonlinear crystals for frequency conversion, future work will focus on implementing the conversion method in smaller and more scalable device architectures.

Explore further: New research signals big future for quantum radar

More information: Ates, S. et al. Two-photon interference using background-free quantum frequency conversion of single photons emitted by an InAs quantum dot. Physical Review Letters 109, 147405 (2012).

Related Stories

Etched quantum dots shape up as single photon emitters

Feb 23, 2011

(PhysOrg.com) -- Like snowflakes or fingerprints, no two quantum dots are identical. But a new etching method for shaping and positioning these semiconductor nanocrystals might change that. What's more, tests ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.