Nanotechnology allows scientists to capture and preserve cancer cells circulating in the bloodstream

December 17, 2012
A new-generation nano-platform capable of capturing circulating tumor cells and releasing them at reduced temperature. Credit: RIKEN

Scientists from the RIKEN Advanced Science Institute in Japan and University of California Los Angeles report a new nanoscale Velcro-like device that captures and releases tumor cells that have broken away from primary tumors and are circulating in the bloodstream. This new nanotechnology could be used for cancer diagnosis and give insight into the mechanisms of how cancer spreads throughout the body.

The device provides a convenient and non-invasive alternative to biopsy, the current method for diagnosis of metastatic cancer. It could enable doctors to detect tumor cells that circulate in cancer patients' blood well before they subsequently colonize as tumors in other organs. The device also enables researchers to keep the tumor cells alive and subsequently study them.

The device was developed by a team led by Hsiao-hua Yu from the RIKEN Advanced Science Institute in Japan and Hsian-Rong Tseng from the Department of Molecular and at the University of California Los Angeles, in research published online today in the journal Advanced Materials.

Similar cell-capture devices have been reported but this technology is unique in that it is capable of catching the tumor cells with great efficiency and releasing them with great . Blood is passed through the device like a filter that contains a molecule capable of adhering to tumor cells like Velcro and separating them with efficiency ranging from 40% to 70%. The are retained by tiny temperature-responsive inside the device. At 37 degrees Celsius, these polymer brushes stick to the tumor cells, but when cooled to 4 degrees Celsius, they release them, allowing scientists to examine the cells.

"Until now, most devices have demonstrated the ability to capture with high efficiency. However, it is equally important to release these captured cells, to preserve and study them in order to obtain insightful information about them. This is the big difference with our device." Explains Hsiao-hua Yu, who led the team that developed the technique to coat the device with polymer brushes.

Explore further: Researchers create 'fly paper' to capture circulating cancer cells

More information: Shuang Hou, Haichao Zhao, Libo Zhao, Qinglin Shen, Kevin S. Wei, Daniel Y. Suh, Aiko Nakao, Bin Xiong, Shyh-Chyang Luo,Hsian-Rong Tseng,Hsiao-hua Yu "Capture and Stimulated Release of Circulating Tumor Cells on Polymer-Grafted Silicon Nanostructures." Advanced Materials, 2012.

Related Stories

Catching cancer with carbon nanotubes

March 28, 2011

A Harvard bioengineer and an MIT aeronautical engineer have created a new device that can detect single cancer cells in a blood sample, potentially allowing doctors to quickly determine whether cancer has spread from its ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.