No need to prepare: New method to directly sequence small genomes without library preparation

Dec 11, 2012

(Phys.org)—For the first time, researchers sequenced DNA molecules without the need for the standard pre-sequencing workflow known as library preparation.

Using this approach, the researchers generated using considerably less DNA than is required using standard methods, even down to less than one of DNA; 500 times less DNA than is needed by standard practices.

Libraries are collections of derived from genomic samples using molecular biology techniques specific to the sequencing technology being used. They are laborious, time consuming, and often DNA consuming. This new technique has the potential to greatly reduce DNA consumption and the time it takes to generate sequencing data from small genomes.

"This is the first time that anyone has been able to directly sequence single molecules of DNA in this way." says Dr Paul Coupland, first author from the Wellcome Trust Sanger institute. "We applied our approach to sequencing the genomes of and found that even with a relatively low level of optimisation, we were able to determine what organisms we were looking at, whether specific genes or were present in the sample (which can be important in determining ) as well as other information such as modifications to specific DNA bases.

"Once optimised, our technique has great potential for a fast and efficient way of identifying organisms in hospitals and other healthcare settings. It also gives us the absolute confidence there is no library based bias in the sequence data, quite simply because no library was ever created."

The team utilised the PacBio RS, a sequencing system that sequences single molecules of DNA, for the direct sequencing approach. Sequence data was generated from small circular single-stranded and double-stranded DNA viral genomes, as well as from linear fragments covering the entire genome of an MRSA strain of .

The team tried analysing the genome of one organism using only eight hundred picograms of DNA, over six hundred times less than the quantity used in standard practice. In this example, the PacBio only generated 70 reads, or fragments of sequence, from the genome. Although this is a fraction of the number of reads generated relative to standard library methods, it was still enough information for the team to identify the specific organism being sequenced; this work could allow the identification of organisms in metagenomic samples that were previously undetectable.

"To sequence microorganisms, one needs to be able to grow them in a lab first," says Dr Tamir Chandra, lead author from the Babraham Institute. "Not only is this time consuming, but sometimes micro-organisms do not grow, making it extremely difficult to sequence their genome.

"With this method we can directly sequence these organisms and find out their identity in a short space of time."

"Our role at the Sanger Institute is to determine how we can utilise and improve these sequencing platforms to generate biological information more efficiently and in turn, possibly, influence the control and treatment of disease and infections." says Dr Harold Swerdlow, lead author from the Wellcome Trust Sanger Institute. "Our technique can be performed without any prior knowledge of the sequence and with no organism specific reagents, in a short space of time. This makes it a promising alternative for clinical situations such as infection control."

Explore further: Living in the genetic comfort zone

More information: Paul Coupland, Tamir Chandra, Mike Quail, Wolf Reik, Harold Swerdlow (2012). 'Direct sequencing of small genomes on the Pacific Biosciences RS without library preparation' Published in BioTechniques on 11 December 2012. www.biotechniques.com/article/113962

Related Stories

MRSA outbreak mapped by DNA sequencing

Nov 13, 2012

Scientists have used DNA sequencing for the first time to effectively track the spread of, and ultimately contain, an outbreak of methicillin-resistant Staphylococcus aureus (MRSA), according to new research published in ...

Human chromosome 3 is sequenced

Apr 27, 2006

The sequencing of human chromosome 3 at Baylor College represents the final stage of a multi-year project to sequence the human genome.

Enabling easy access to DNA sequence information

May 10, 2010

The European Nucleotide Archive (ENA) is launched today, consolidating three major sequence resources to become Europe's primary access point to globally comprehensive DNA and RNA sequence information. The ENA is freely available ...

Recommended for you

Living in the genetic comfort zone

6 hours ago

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

Better genes for better beans

12 hours ago

Some of the most underappreciated crops could soon become the most valuable tools in agriculture with new research from the Centre for Underutilised Crops at the University of Southampton. Coordinator Mark Chapman has created ...

Aggressive plant fungus threatens wheat production

12 hours ago

The spread of exotic and aggressive strains of a plant fungus is presenting a serious threat to wheat production in the UK, according to research published in Genome Biology. The research uses a new survei ...

A taxi ride to starch granules

13 hours ago

Plant scientists at ETH have discovered a specific protein that significantly influences the formation of starch in plant cells. The findings may be useful in the food and packaging industries.

Lager yeast ancestors were full of eastern promise

14 hours ago

There are few drinks as iconic as a 'pint of the black stuff'. It might, therefore, surprise beer connoisseurs to learn that the DNA of the all-important brewing yeast – the building blocks of the perfect Stout – is the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.