Researchers print materials for soft robotics

Dec 20, 2012

(Phys.org)—University of Wollongong researchers from the ARC Centre of Excellence for Electromaterials Science (ACES) and the School of Chemistry have printed materials which can actuate and strain gauge.

The research was selected as a cover in the recent (issue 22), one of the world's leading scientific journals in the field.

In their paper, ACES Chief Investigator Associate Professor Marc in het Panhuis and honours graduate Geoffrey Pidcock showed that gellan gum, a well-known food additive provides the optimum conditions for the printing of carbon nanotubes (CNT), a material at the forefront of developments in bio- and nanotechnology.

The research demonstrated that the offers great flexibility over the geometry and application of the gauge and actuating material to soft substrates such as textile and gels.

Professor in het Panhuis said: "Actuators are all around us—just think of the muscles in our body which are the best known example of actuators which we use to run, catch a wave or kick a ball."

Professor in het Panhuis said that the use of gellan gum opens up possibilities for the printing of wet strain gauges and actuators for applications in soft robotics.

"Monitoring actuator motion in robotics and rehabilitation applications requires 'soft' strain gauges rather than the currently used 'hard' metal or silicon strain gauges. Our work is an important developmental step towards the realisation of these concepts," he said.

Explore further: Lab unveil new nano-sized synthetic scaffolding technique

add to favorites email to friend print save as pdf

Related Stories

New ink formulated to print living human tissue

Nov 16, 2012

(Phys.org)—Scientists are one step closer to being able to print tissue replacements for diseased or damaged body parts using inkjet printers, thanks to the development of a specialised ink formulation.

Underwater robot with a sense of touch

May 04, 2009

(PhysOrg.com) -- Maintenance of offshore drilling rigs or underwater cables, taking samples of sediment - underwater robots perform a variety of deep-sea tasks. Research scientists now aim to equip robots ...

Recommended for you

Lab unveil new nano-sized synthetic scaffolding technique

2 hours ago

Scientists, including University of Oregon chemist Geraldine Richmond, have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological ...

Tiny graphene drum could form future quantum memory

Aug 28, 2014

Scientists from TU Delft's Kavli Institute of Nanoscience have demonstrated that they can detect extremely small changes in position and forces on very small drums of graphene. Graphene drums have great potential ...

Graphene reinvents the future

Aug 27, 2014

For many scientists, the discovery of one-atom-thick sheets of graphene is hugely significant, something with the potential to affect just about every aspect of human activity and endeavour.

User comments : 0