The first LHC protons run ends with new milestone

Dec 17, 2012

(—This morning CERN completed the first LHC proton run. The remarkable first three-year run of the world's most powerful particle accelerator was crowned by a new performance milestone. The space between proton bunches in the beams was halved to further increase beam intensity.

"This new achievement augurs well for the next LHC run starting in 2015," said 's Director for Accelerators and Technology, Steve Myers, " beams are vital for the success of the LHC programme. More intense beams mean more collisions and a better chance of observing rare phenomena."

To put this into context, of the 6 million billion proton- generated by the LHC, the ATLAS and CMS experiments have each recorded around 5 billion collisions of interest over the last three years. Of these, only around 400 produced results compatible with the -like particle whose discovery was announced in July.

A beam in the LHC is not a continuous string of particles, but is divided into hundreds of bunches, each a few tens of centimetres long. Each bunch contains more than a hundred billion protons. During the last few days, the space between bunches has been successfully halved, achieving the design specification of 25 nanoseconds rather than the 50 nanoseconds used so far. Halving the bunch spacing allows the number of bunches in the beam to be doubled. A record number of 2748 bunches was recorded in each beam last weekend, almost twice as many as the maximum reached previously in 2012, but at the of 450 GeV and without collisions. Several hours of physics were then performed with up to 396 bunches in each beam, spaced by 25 nanoseconds, each beam being accelerated to the energy of 4 TeV.

"The LHC's performance has exceeded all expectations over the last three years," said Steve Myers, "The accelerator delivered more than 6 million billion collisions and the luminosity has continuously increased. It's a fantastic achievement, and I'm incredibly proud of my team."

The luminosity, a crucial parameter measuring the rate of collisions of an accelerator, has reached a value of 7.7x1033cm-2s-1, more than twice the maximum value obtained in 2011 (3.5x1033cm-2s-1). The collision energy was increased from 7 TeV in 2011 to 8 TeV in 2012.

This year-on-year improvement in performance has allowed the LHC experiments to obtain important results quicker than expected. In addition to the spectacular discovery of a Higgs-like particle announced in July, the experiments have led to many other studies improving our understanding of fundamental matter.

At the beginning of 2013, the LHC will collide protons with lead ions before going into a long maintenance stop until the end of 2014. Running will resume in 2015 with increased collision energy of 13 TeV and another increase in .

Explore further: What is Nothing?

add to favorites email to friend print save as pdf

Related Stories

Large Hadron Collider sets world record beam intensity

Apr 22, 2011

( -- Around midnight this night CERN's Large Hadron Collider set a new world record for beam intensity at a hadron collider when it collided beams with a luminosity of 4.67 x 1032cm-2s-1. This exceeds the previous world ...

Large Hadron Collider 7 TeV experiment on March 30

Mar 23, 2010

( -- With beams routinely circulating in the Large Hadron Collider at 3.5 TeV, the highest energy yet achieved in a particle accelerator, CERN has set the date for the start of the LHC research ...

Large Hadron Collider to run at 4 TeV per beam in 2012

Feb 14, 2012

( -- CERN today announced that the Large Hadron Collider will run with a beam energy of 4 TeV this year, 0.5 TeV higher than in 2010 and 2011. This decision was taken by CERN management following ...

Recommended for you

What is Nothing?

22 hours ago

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

Aug 22, 2014

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

Aug 21, 2014

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (3) Dec 17, 2012
Re: 3.5x1033cm-2s-1
Dear, is it possible for you to use superscript in the 21st century? I'm sure assistance can be given (by your readership) if there is an issue...