A layer of cool, healthy air

Dec 17, 2012

Stratum ventilation systems have been touted as a much more energy efficient system for cooling buildings such as school rooms and offices in hotter climes based on the provisions of the recent ANSI/ASHRAE 55-2010. They may also reduce the risk of the spread of airborne diseases according to a study to be published early next year in the journal World Review of Science, Technology and Sustainable Development.

This approach to cooling small and medium-sized rooms in a building has come to the fore as a low-cost alternative to high-energy air-conditioning systems particularly in East Asia and is being recommended for school buildings and other establishments by several governments. In this system a horizontal is produced. However, Lin and colleagues hoped to address the potential problem with any air distribution system in understanding how it might disperse airborne viruses, such as flu viruses, present on expectorated sputum .

Zhang Lin, Jinliang Wang, Ting Yao, T.T. Chow and K.F. Fong of the City University of Hong Kong have created a to help them predict the movements of exhaled droplets in a room with different types of air distribution systems: mixing ventilation, displacement ventilation and stratum ventilation. The simulation is based on the so-called drift-flux model developed from an Eulerian-Eulerian approach is adopted to simulate the particle movement in a room.

"The results show that the created by different ventilation methods have great influence on the particle fates," the team explains. The for the breathing zone under stratum ventilation are significantly lower than that under mixing ventilation or with displacement ventilation. "This implies that the risk of pathogen inhalation under stratum ventilation is also lower," the team adds. The team's model demonstrates that of the various ventilation systems the occupants of stratum ventilated room would have the lowest risk of infection.

Explore further: Team develops faster, higher quality 3-D camera

More information: "Numerical comparison of dispersion of human exhaled droplets under different ventilation methods" in World Review of Science, Technology and Sust. Development, 2013, 10, 142-161.

Related Stories

New gas sensors for monitoring carbon dioxide sinks

May 08, 2008

A novel gas sensor system makes it possible to monitor large areas cost-effectively the first time. The patented gas sensor is based on the principle of diffusion, according to which certain gases pass through ...

Recommended for you

Team develops faster, higher quality 3-D camera

8 hours ago

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Researchers finding applications for tough spinel ceramic

18 hours ago

Imagine a glass window that's tough like armor, a camera lens that doesn't get scratched in a sand storm, or a smart phone that doesn't break when dropped. Except it's not glass, it's a special ceramic called ...

Classroom acoustics for architects

Apr 23, 2015

The Acoustical Society of America (ASA) has published a free online booklet for architects to aid in the application of ANSI/ASA S12.60-2010/Part 1-American National Standard Acoustical Performance Criteria, Design Requirements, ...

JRC wins competition on indoor localization

Apr 23, 2015

A team of JRC researchers outperformed 27 teams from academia and industry across the globe and achieved best overall result at a competition on indoor localisation in Seattle, USA. Providing accurate position ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.