Immune cells use tethered slings to avoid being swept away

Dec 17, 2012

Neutrophils, critical components of the immune system's response to bacteria and other pathogens, throw out tube-like tethers that act as anchor points, controlling their speed as they roll along the walls of blood vessels during extremely fast blood flow en route to an infection site, according to research presented on Dec. 17 at the American Society for Cell Biology Annual Meeting in San Francisco.

To attack a bacterial infection in tissue, neutrophils have to leave the blood stream and approach the infection site through tiny venules that are part of the microcirculation system, according to Prithu Sundd, PhD, who is in the laboratory of Klaus Ley, PhD, at the La Jolla Institute for Allergy and Immunology, La Jolla, CA.

Extensions of the cell membrane, the slings turned out to be vital aids in the navigation because if neutrophils lose control while attempting to enter infected tissue, they can be swept away in the blood flow, which could delay the mechanism. Flow in these narrow venules is measured as wall shear stress. A shear stress exceeding 2 dyn/cm2 can sweep away other leukocytes, but neutrophils have a special ability to move under control at shear stress 10 times higher.

Shear-resistance in neutrophils was known to be aided by cell flattening and by these mysterious membrane extensions but the details were poorly understood. To determine the exact mechanism behind neutrophils' rolling, Dr. Sundd working with physicist Alex Groisman, PhD, of the University of California, San Diego, to shoot a high-speed video, using total internal reflection to track labeled neutrophils from mouse bone marrow rolling along an artificial venule, all driven by a microfluidic device at a shear stress of 6 to 10 dyn/cm2.

In the 15-second video, the red-dyed neutrophil used its long membrane tether like a sling to anchor itself without being swept away by the high shear force of blood. Instead of a single anchor point, the sling tether is coated by patches of cell adhesion molecules that latched onto the passage walls but peeled loose, patch by patch, as the neutrophil gently rolled forward. At the tether's end, the neutrophil swung it ahead like a lasso to gain new leverage.

The researchers say their dramatic video underscores the complexity of the body's immune system. The slings are not only unique structures, says Dr. Sundd, but may help explain how rolling are able to present their antigen-sensing ligands at the vessel wall before entering the site of infection.

Explore further: In between red light and blue light: Researchers discover new functionality of molecular light switches

More information: "Slings enable leukocyte rolling during inflammation," Monday, Dec. 17, 2012, 12:30 pm, Session: Intermediate Filaments, presentation:1290, poster: B575, Exhibit Halls A-C

add to favorites email to friend print save as pdf

Related Stories

Key step in immune system-fueled inflammation discovered

Jul 01, 2012

Like detectives seeking footprints and other clues on a television "whodunit," science can also benefit from analyzing the tracks of important players in the body's molecular landscape. Klaus Ley, M.D., a scientist at the ...

How smoking encourages infection

Apr 15, 2008

Now new research published in the open access journal BMC Cell Biology shows that nicotine affects neutrophils, the short-lived white blood cells that defend against infection, by reducing their ability to seek and destro ...

Rogue blood cells may contribute to post-surgery organ damage

Jun 26, 2011

A study from scientists at Queen Mary, University of London, sheds new light on why people who experience serious trauma or go through major surgery, can suffer organ damage in parts of the body which are seemingly unconnected ...

A beneficial suicide

Jan 10, 2007

They are the largest group of white blood cells: neutrophil granulocytes kill microorganisms. Neutrophils catch microbes with extracellular structures nicknamed Neutrophil Extracellular Traps (NETs) that are ...

Recommended for you

Scientists see how plants optimize their repair

6 hours ago

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

Structure of an iron-transport protein revealed

12 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

13 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

User comments : 0