An image gallery gift from Swift satellite

Dec 28, 2012
The Crab Nebula is the wreckage of an exploded star, or supernova, observed in the year 1054. The expanding cloud of gas is located 6,500 light-years away in the constellation Taurus. This composite of three Swift UVOT ultraviolet images highlights the luminous hot gas in the supernova remnant. The image is constructed from exposures using these filters: uvw1, centered at 2,600 angstroms (shown as red); uvm2, centered at 2,246 angstroms (green); and uvw2, centered at 1,928 angstroms (blue). Credit: NASA/Swift/E. Hoversten, PSU

(Phys.org)—Of the three telescopes carried by NASA's Swift satellite, only one captures cosmic light at energies similar to those seen by the human eye. Although small by the standards of ground-based observatories, Swift's Ultraviolet/Optical Telescope (UVOT) plays a critical role in rapidly pinpointing the locations of gamma-ray bursts (GRBs), the brightest explosions in the cosmos.

But as the proxy to the human eye aboard Swift, the UVOT takes some amazing pictures. The Swift team is celebrating eight years of UVOT operations by collecting more than 100 of the instrument's best snapshots in a web-based photo gallery. The images also can be viewed with the free Swift Explorer Mission iPhone app developed by the Swift (MOC), which is located in State College, Pa., and operated by Penn State.

Swift has detected an average of about 90 GRBs a year since its launch in 2004. "When we aren't studying GRBs, we use the satellite's unique capabilities to engage in other scientific investigations, some of which produce beautiful images from the UVOT that we're delighted to be able to share with the public," said Michael Siegel, the lead scientist on the UVOT and a research associate in at the MOC.

The targets range from comets and to supernova remnants, and active galaxies powered by .

Omega Centauri (also known as NGC 5139) is the largest, brightest and most massive of our galaxy's retinue of 150 or so globular star clusters. Packing some 10 million stars into a region just 150 light-years across, Omega Centauri is easily visible to the unaided eye despite lying nearly 16,000 light-years away. Unlike other star clusters, whose members all have similar age and chemical makeup, Omega Centauri displays a wide range of age and chemistry, from the ancient (12 billion years) to the relatively recent. The presence of different stellar populations suggests that Omega Centauri is not, in fact, a globular cluster, but the remnant core of a dwarf galaxy torn to shreds by the Milky Way’s gravity. The false-color ultraviolet composite from Swift UVOT's uvw1, uvm2 and uvw2 filters reveals a treasure trove of rare stars in various stages of demise. Credit: NASA/Swift/S. Holland (Goddard), M. Siegel and E. Fonseca (PSU)

"One of our more challenging projects in the past was completing an ultraviolet mosaic of M31, the famous ," said Stefan Immler, a member of the Swift team at NASA's Goddard Space Flight Center in Greenbelt, Md. "Because the galaxy is so much larger than the UVOT field of view, we had to take dozens of pictures and blend them together to show the whole object."

An ongoing mosaic project targets the Large and , two small orbiting our own, and makes the Andromeda effort look like child's play. Although the galaxies are much smaller than M31, they are both much closer to us and extend over much larger areas of the sky. The task involves acquiring and aligning hundreds of images and is far from complete.

With the UVOT's wavelength range of 1,700 to 6,000 angstroms, Swift remains one of few missions that study ultraviolet light, much of which is blocked by Earth's atmosphere.

The 6.5-foot-long (2 meter) UVOT is centered on an 11.8-inch (30 cm) primary mirror. Designed and built by the Mullard Space Science Laboratory in Surrey, England, the telescope module includes the primary and secondary mirrors, an external baffle to reduce scattered light, two redundant detectors—only one has been used to date—and a power supply.

Each detector lies behind an identical filter wheel. The wheel holds color filters that transmit a broad range of wavelengths as well as devices called grisms, which spread out incoming light in much the same way as a prism spreads sunlight into a rainbow of component colors. The detectors retain information on the position and arrival time of each photon of light, an operating mode similar to typical X-ray telescopes.

Technicians prepare Swift's UVOT for vibration testing on Aug. 1, 2002, more than two years before launch, in the High Bay Clean Room at NASA's Goddard Space Flight Center in Greenbelt, Md. Credit: NASA's Goddard Space Flight Center

Because most ultraviolet light never reaches the ground, Swift's UVOT provides a unique perspective on the cosmos. For example, it can measure the amount of water produced in passing comets by detecting the ultraviolet emission of hydroxyl (OH), one of the molecular fragments created when ultraviolet sunlight breaks up water molecules. Other types of UVOT science include exploring emissions from the centers of active galaxies, studying regions undergoing star formation, and identifying some of the rarest and most exotic stars known.

Toward the end of its energy-producing life, a star like the sun will blow away its outer layers as its core transforms into a compact, Earth-sized remnant known as a white dwarf. This chapter of stellar evolution, known to astronomers as the post-asymptotic giant branch phase, lasts only about 100,000 years—just an eye-blink in comparison to the star's total lifetime. To better understand the process, astronomers need to study large numbers of these unusual stars.

"The UVOT's capabilities give us a great tool for surveying stellar populations and cataloging rare types of ultraviolet-bright stars," Siegel explained.

One of the first targets for the stellar survey was the giant cluster Omega Centauri, which hosts millions of stars and may be the remains of a small galaxy. Thanks to Swift's UVOT, astronomers at Goddard and Penn State have cataloged hundreds of rare stellar types in the cluster and are now comparing their properties and numbers to predictions from theoretical models describing how stars evolve.

Explore further: How baryon acoustic oscillation reveals the expansion of the universe

add to favorites email to friend print save as pdf

Related Stories

Swift Satellite records early phase of gamma ray burst

Mar 02, 2009

(PhysOrg.com) -- UK astronomers, using a telescope aboard the NASA Swift Satellite, have captured information from the early stages of a gamma ray burst - the most violent and luminous explosions occurring ...

Swift narrows down origin of important supernova class

Mar 20, 2012

(PhysOrg.com) -- Studies using X-ray and ultraviolet observations from NASA's Swift satellite provide new insights into the elusive origins of an important class of exploding star called Type Ia supernovae. ...

Scientists Probe Green Comet

Feb 20, 2009

(PhysOrg.com) -- Space scientists from the University of Leicester are keeping a close eye on a ‘green comet’ fast approaching the Earth - reaching its nearest point to us on February 24.

Swift satellite monitors departing Comet Garradd

Apr 13, 2012

(Phys.org) -- An outbound comet that provided a nice show for skywatchers late last year is the target of an ongoing investigation by NASA's Swift satellite. Formally designated C/2009 P1 (Garradd), the unusually ...

Swift satellite comet tally highlighted

Apr 24, 2009

A montage of comet images made using NASA's Swift spacecraft illustrates just how different three comets can be. The images, including a never-released image of Comet 8P/Tuttle, were shown during a webcast ...

Recommended for you

The Great Cold Spot in the cosmic microwave background

Sep 19, 2014

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1 / 5 (10) Dec 28, 2012
What does the Crab Nebula;
http://wwwastro.m...dex.html

have in common with the experiments on this page?

http://www.lawren...temid=80

They are both DPF (Dense Plasma Foci)!

This image of interacting plasmoids of Arp 77;
http://www.swift....vopt.jpg

Can be compared easily to Peratt's PIC simulation of interacting plasmoids (or Bostick's plasmoids);
http://www.holosc...alaxies/

That same form can be seem "imprinted" on the face of Mars;

http://www.holosc...canyons/

lengould100
5 / 5 (6) Dec 28, 2012
Cantdrive: Near as I can tell, you have nothing NEW to add to these discussions, either re real astronomy or any wierd plasma possibility. Give it (and us) a break, ok?
lengould100
5 / 5 (3) Dec 28, 2012
some of which produce beautiful images from the UVOT that we're delighted to be able to share with the public
Thank you Swift MOT.
cantdrive85
1.4 / 5 (8) Dec 28, 2012
If you are tired of it, give me the thumbs down and don't read it, a vast majority obviously ignore it anyway, why shouldn't you join them.

"Men occasionally stumble over the truth, but most of them pick themselves up and carry on as if nothing ever happened." Winston Churchill
Claudius
1 / 5 (1) Dec 29, 2012
"Men occasionally stumble over the truth, but most of them pick themselves up and carry on as if nothing ever happened." Winston Churchill


Close, but no cigar:

"Occasionally he stumbled over the truth, but hastily picked himself up and hurried on as if nothing had happened."

- On Stanley Baldwin, as cited in Churchill by Himself (2008), Ed. Langworth, PublicAffairs, p. 322 ISBN 1586486381