Highly inflated Jupiters

Dec 10, 2012
The HATNet telescopes at the Fred L. Whipple Observatory in Arizona. The telescopes have detected three exceptionally large extra-solar planets, dubbed highly inflated Jupiters.

There are currently 851 confirmed extra-solar planets. Of these, 289 were detected because their orbits (as seen from Earth) take them across the face of their host star, dimming the star's light in a transit event. The Kepler satellite has provided the largest set of transiting extra-solar planets and, if the list is expanded to include candidate planets (that is, planets spotted but not yet confirmed), it contains several thousand objects. Of the 289 confirmed transiting planets though, 194 were found with ground-based telescopes.

"Hot Jupiters" are those extra-solar planets whose masses are about the same as Jupiter's, but whose orbits are so close to their stars that (unlike Jupiter in our ) their atmospheres are very hot, in some cases over 2000K, and correspondingly swollen to as much as twice the diameter of Jupiter. The large diameters and small orbits (frequent transits) of hot Jupiters make them a particularly good class for ground-based telescopes to identify via their transits.

Scientists who model planetary atmospheres calculate that the diameters of hot Jupiters should be inflated, but they cannot yet adequately explain the measured sizes. For that matter, scientists are not sure why hot Jupiters should exist at all, nor how they formed and evolved. Astronomers trying to understand how the Earth formed and how it ended up orbiting the Sun at a distance just right for temperatures conducive to life are therefore very interested in the lessons to be learned from hot Jupiters.

These same characteristics of transiting hot Jupiters make them particularly good candidates for ground-based observations. CfA astronomers have pioneered a new technique for discovering and studying using a system of six small, automated ground-based telescopes (diameters between about 6 and 11 centimeters) that take digital, of the sky nightly, looking for intensity variations in each star's light. Because the telescope diameters are small, the field of view of each in the sky is large, and many thousands of stars are simultaneously monitored. The cameras use multi-megapixel CCDs to obtain tens of thousands of exposures that the software then scans looking for variability that signals planetary transits. The telescopes, which are currently located at the Fred L. Whipple Observatory in Arizona and the Submillimeter Array in Mauna Kea, Hawaii, are collectively called the HATNet. So far, HATNet has discovered 42 of the 289 known transiting planets.

CfA astronomers Bence Beky, Torres Guillermo, Dave Latham, Bob Noyes, Gilbert Esquerdo, Allyson Bieryla, Dimitar Sasselov, Gabor Furesz, and Robert Stefanik, and their colleagues, using HATNet have published their discovery of three new hot Jupiters—and in so doing have identified a new subclass of extra-solar planets, dubbed "highly inflated Jupiters."

The three new planets each has an orbital period of just a few days, a mass slightly smaller than that of Jupiter (by about 20%), and a radius 50%-70% larger than Jupiter's. Combining their results with statistics of previously known hot Jupiters, the scientists realized that hot Jupiters like these three, with radii over 50% larger than Jupiter's, form a distinct subset of exoplanets with highly inflated atmospheres. Although the reasons for their existence remain a topic of research, as with all the , the new results demonstrate how important it is for astronomers to collect detailed information on large numbers of objects. One might perhaps think that the thousands of known or suspected extra-solar planets comprise a large enough set for a thorough understanding of planets, but the discovery of this distinct subset of highly-inflated Jupiters demonstrates the need for ongoing research.

Explore further: What does the next generation telescope need to detect life?

Provided by Smithsonian Astrophysical Observatory

4.2 /5 (5 votes)

Related Stories

X-Ray observations of an extrasolar planetary system

Oct 22, 2010

(PhysOrg.com) -- The majority of extra-solar planets (about 278 of them) are more massive than Jupiter. About 20% of this majority group orbit their stars at a distances of less than one-tenth of an astronomical ...

Two 'b''s in the Beehive

Aug 15, 2012

As astronomers near the 800 mark for confirmed extra solar planets, it seems that notable milestones are becoming fewer and further between. Multi-planet systems aren’t even worth mentioning. Planets ...

Two more kepler planets confirmed

Aug 08, 2011

Hot on the heels of confirming one Kepler planet, the Hobby-Eberly Telescope announces the confirmation of another planet. Another observatory, the Nordic Optical Telescope, confirms its first Kepler planet ...

Four new exoplanets to start off the new year!

Jan 06, 2012

It’s only a few days into 2012 and already some new exoplanet discoveries have been announced. As 2011 ended, there were a total of 716 confirmed exoplanets and 2,326 planetary candidates, found by both ...

Recommended for you

New window on the early Universe

Oct 22, 2014

Scientists at the Universities of Bonn and Cardiff see good times approaching for astrophysicists after hatching a new observational strategy to distill detailed information from galaxies at the edge of ...

Chandra's archives come to life

Oct 22, 2014

Every year, NASA's Chandra X-ray Observatory looks at hundreds of objects throughout space to help expand our understanding of the Universe. Ultimately, these data are stored in the Chandra Data Archive, ...

New robotic telescope revolutionizes the study of stars

Oct 22, 2014

In the last 8 months a fully robotic telescope in Tenerife has been carrying out high-precision observations of the motion of stellar surfaces. The telescope is the first in the SONG telescope network and ...

User comments : 0