Highly efficient electrocatalyst for the reduction of oxygen in fuel cells and batteries

December 18, 2012
Highly efficient electrocatalyst for the reduction of oxygen in fuel cells and batteries

(Phys.org)—Be it a battery or a fuel cell, efficient electrodes are the be-all and end-all of every electrochemical cell. In the journal Angewandte Chemie, a team of Korean and American scientists has now introduced a novel material for electrodes based on affordable melamine foam and carbon black. The high porosity significantly facilitates fast mass transport and a high number of catalytically active centers drastically increase the oxygen-reducing activity of cathodes for fuel cells and metal-air batteries.

The reaction that occurs at the cathodes of fuel cells and metal-air batteries is the electrochemical reduction of oxygen, namely the oxygen reduction reaction (ORR). This reaction is considerably inhibited because of its sluggish rate, and the efficiency of the cells is lower than it could be. The catalytic cathode must ensure that oxygen reacts with water, taking up electrons to form OH- ions in alkaline solution. The problem is that in a complex system involving solid, liquid, and gaseous , transport processes are often too slow and inhibit the process, especially when discharging with higher current densities.

Cathodes made of a porous carbon support (carbon black) on which a catalytically active metal like platinum is finely dispersed can very effectively minimize this kinetic inhibition. However, they are expensive and not very stable, thus making them impractical for widespread application. A team led by Jaephil Cho at the Ulsan National Institute of Science and Technology (Korea) and Meilin Liu at the Georgia Institute of Technology (USA) thus aimed to develop a more economical alternative.

They were inspired by the tetrapod structure (Greek tetra: four, podes: feet) of breakwaters to synthesize a new highly efficient electrocatalyst. Tetrapods, whose four "feet" are pointed toward the corners of an imaginary tetrahedron, are constructed at the coast as well as near dams and piers to reduce the force of waves crashing against the shore. These structures also provide sanctuary for marine life forms in their many large cavities. When melamine foam is pyrolyzed and ground with a mortar and pestle, it forms microscopic fragments resembling tetrapods.

The scientists treated melamine foam with iron chloride and nitrogen-doped ketjenblack (conducting pellets of carbon black). They carbonized this product and extracted it with sulfuric acid. The resulting nanotetrapods studded with nanoparticles of carbon black have a very high specific surface area, a large number of catalytically active centers (Fe/Fe3C, and CN groups), and many pores that allow for rapid . Cathodes made of this new electrode material are highly durable and excellent performance, comparable to those of metal-based cathodes – at a much lower price. These may represent a highly promising starting point for a new generation of inexpensive and highly efficient metal-air batteries and fuel cells.

Explore further: Carbon Nanotubes Make Fuel Cells Cheaper

More information: Cho, J. A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: N-Doped Ketjenblack Incorporated into Fe/Fe3C-Functionalized Melamine Foam. Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201207193

Related Stories

Carbon Nanotubes Make Fuel Cells Cheaper

February 9, 2009

(PhysOrg.com) -- As fuel cells are becoming more popular due to their potential use in applications such as hydrogen-powered vehicles, auxiliary power systems, and electronic devices, the need for the precious metal platinum ...

Progress made in building rechargeable lithium-air battery

July 20, 2012

(Phys.org) -- Researchers in the United Kingdom have taken another step towards proving that so named lithium-air (Li-O2) batteries might one day become practical. Up to now the problem has been using the technology to build ...

Researchers develop superior fuel cell material

August 24, 2012

Using a mixture of gold, copper and platinum nanoparticles, IBN researchers have developed a more powerful and longer lasting fuel cell material. This breakthrough was published recently in leading journal, Energy and Environmental ...

Can cobalt nanoparticles replace platinum in fuel cells?

October 17, 2012

(Phys.org)—Platinum works well as a catalyst in hydrogen fuel cells, but it has at least two drawbacks: It is expensive, and it degrades over time. Brown chemists have engineered a cheaper and more durable catalyst using ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.