Trying to halt hepatitis C's molecular hijacking

December 27, 2012

Researchers at the University of Colorado School of Medicine have figured out intimate details of how the hepatitis C virus takes over an invaded cell, a breakthrough that could point to way for new treatments for the virus.

Hep C hijacks the machinery by which a cell makes proteins and uses it instead to create proteins for the virus. Over the last two decades, researchers have figured out that Hep C uses an RNA molecule to do this. Now they're trying to fill in the details.

One key detail is reported in a paper published online Dec. 23 in . It's written by Jeffrey Kieft, PhD, an associate professor at the CU medical school's Department of Biochemistry and Molecular Genetics and an Early Career Scientist of the Howard Hughes Medical Institute, and his former graduate student, Megan Filbin, PhD, a graduate of the Program in Molecular Biology.

Working with researchers from the lab of Tamir Gonen at the Janelia Farm Research Campus of the Howard Hughes Medical Institute, Kieft used ultra high-power to take images of individual from Hep C as they interacted with the cell's machinery. The researchers combined those images with a variety of other experiments and these clues led them to identify a new way that the virus' RNAs takes over the cell's machinery.

Specifically, the researchers focused on how a ribosome, the cell's protein-making factory, can be manipulated by the Hep C RNA to affect a part of the protein process called translocation. And they saw something else – that even very small changes in the interactions important for that hijacking process can be blocked.

"This points the way to developing drugs to fight in ways that current therapies do not," Kieft says.

Explore further: Danish researches solve virus puzzle

Related Stories

Danish researches solve virus puzzle

March 30, 2007

How is virus as for example HIV and bird flu able to make the cells within a human body work for the purpose of the virus? Researchers at the University of Copenhagen shed new light on this question.

Getting wise to the influenza virus' tricks

May 4, 2008

Influenza is currently a grave concern for governments and health organisations around the world. The worry is the potential for highly virulent bird flu strains, such as H5N1, to develop the ability to infect humans easily. ...

Recommended for you

Cell aging slowed by putting brakes on noisy transcription

July 30, 2015

Working with yeast and worms, researchers found that incorrect gene expression is a hallmark of aged cells and that reducing such "noise" extends lifespan in these organisms. The team published their findings this month in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.