100-Gigabit per second RF communications link envisioned between airborne and ground assets 

Dec 18, 2012
100-Gigabit per second RF communications link envisioned between airborne and ground assets 

Fiber optic cables provide the core backbone for military and civilian networks, enabling Internet, phone, video and other data to move at super-high speeds with virtually no degradation over long distances. In deployed environments, where a fiber optic backbone doesn't exist, other communications modes are used resulting in reduced data-rate capacity for the warfighter.

DARPA's 100 Gb/s RF Backbone (100G) intends to develop a fiber-optic-equivalent communications backbone that can be deployed worldwide. The goal is to create a 100 Gb/s data link that achieves a range greater than 200 kilometers between airborne assets and a range greater than 100 kilometers between an airborne asset (at 60,000 feet) and the ground.  The 100G program goal is to meet the weight and power metrics of the Common Data Link (CDL) deployed by Forces today for high-capacity data streaming from platforms.

A major challenge to providing 100 Gb/s from an airborne asset to the ground is cloud cover. Free-space optical links won't propagate through the cloud layer, which means RF is the only option. The system will be designed to provide all-weather capability enabling tactically relevant data throughput and link ranges through clouds, fog or rain. Technical advances in modulation of millimeter-wave frequencies open the door to achieving 100G's goals.

"Providing fiber-optic-equivalent capacity on a radio frequency carrier will require spectrally efficient use of available RF spectrum," said Dick Ridgway, DARPA program manager. "100G plans to demonstrate how high-order modulation and spatial multiplexing can be synergistically combined to achieve 100 per second with the size, weight and power needed for a deployable system. We believe that to achieve the program's goals requires the convergence of providers and the defense communications tech base."

Explore further: Scientists twist radio beams to send data: Transmissions reach speeds of 32 gigabits per second

More information: DARPA will host a proposers' day on Jan. 9, 2013, in Arlington, Va. For details, visit: go.usa.gov/gVnB

add to favorites email to friend print save as pdf

Related Stories

Verizon completes industry-leading 100G Ethernet field trial

Jun 23, 2010

Continuing to lead the industry in 100G technology, Verizon has completed a field trial carrying 100 gigabit-per-second Ethernet traffic on a metropolitan Ethernet infrastructure. Using Alcatel-Lucent equipment deployed in ...

Galileo to image objects in geosynchronous orbit faster

Jan 17, 2012

Military satellites are critical sources of communications and data for today's operations environments. Through DARPA's Phoenix program, usable antennas or solar arrays from retired satellites in geosynchronous orbit (GEO ...

Fiber Optical Transmission In Demand Of Higher Capacity

Apr 02, 2010

(PhysOrg.com) -- With the increasing high volume content over the internet, such as multimedia and high definition images, new transmission methods need to be found to handle the increasing data demand. Nippon ...

Recommended for you

Cutting congestion on the data network highway

Sep 12, 2014

Perhaps no other consumer-driven technology has made such incredible advances in such a relatively short space of time as the mobile phone. Today's smartphones are used to stream videos, access social media ...

T-Mobile to sell phones that call, text on Wi-Fi (Update)

Sep 10, 2014

T-Mobile will sell more than 100 smartphone models with a built-in feature that taps into Wi-Fi networks to make phone calls and send texts when customers can't connect to the wireless carrier's cellular network.

User comments : 0