100-Gigabit per second RF communications link envisioned between airborne and ground assets 

Dec 18, 2012
100-Gigabit per second RF communications link envisioned between airborne and ground assets 

Fiber optic cables provide the core backbone for military and civilian networks, enabling Internet, phone, video and other data to move at super-high speeds with virtually no degradation over long distances. In deployed environments, where a fiber optic backbone doesn't exist, other communications modes are used resulting in reduced data-rate capacity for the warfighter.

DARPA's 100 Gb/s RF Backbone (100G) intends to develop a fiber-optic-equivalent communications backbone that can be deployed worldwide. The goal is to create a 100 Gb/s data link that achieves a range greater than 200 kilometers between airborne assets and a range greater than 100 kilometers between an airborne asset (at 60,000 feet) and the ground.  The 100G program goal is to meet the weight and power metrics of the Common Data Link (CDL) deployed by Forces today for high-capacity data streaming from platforms.

A major challenge to providing 100 Gb/s from an airborne asset to the ground is cloud cover. Free-space optical links won't propagate through the cloud layer, which means RF is the only option. The system will be designed to provide all-weather capability enabling tactically relevant data throughput and link ranges through clouds, fog or rain. Technical advances in modulation of millimeter-wave frequencies open the door to achieving 100G's goals.

"Providing fiber-optic-equivalent capacity on a radio frequency carrier will require spectrally efficient use of available RF spectrum," said Dick Ridgway, DARPA program manager. "100G plans to demonstrate how high-order modulation and spatial multiplexing can be synergistically combined to achieve 100 per second with the size, weight and power needed for a deployable system. We believe that to achieve the program's goals requires the convergence of providers and the defense communications tech base."

Explore further: DOCOMO and Huawei confirm LTE network over unlicensed spectrum

More information: DARPA will host a proposers' day on Jan. 9, 2013, in Arlington, Va. For details, visit: go.usa.gov/gVnB

add to favorites email to friend print save as pdf

Related Stories

Verizon completes industry-leading 100G Ethernet field trial

Jun 23, 2010

Continuing to lead the industry in 100G technology, Verizon has completed a field trial carrying 100 gigabit-per-second Ethernet traffic on a metropolitan Ethernet infrastructure. Using Alcatel-Lucent equipment deployed in ...

Galileo to image objects in geosynchronous orbit faster

Jan 17, 2012

Military satellites are critical sources of communications and data for today's operations environments. Through DARPA's Phoenix program, usable antennas or solar arrays from retired satellites in geosynchronous orbit (GEO ...

Fiber Optical Transmission In Demand Of Higher Capacity

Apr 02, 2010

(PhysOrg.com) -- With the increasing high volume content over the internet, such as multimedia and high definition images, new transmission methods need to be found to handle the increasing data demand. Nippon ...

Recommended for you

Bringing emergency communications together

Aug 21, 2014

A new University of Adelaide research project aims to improve emergency operations through integrated communications systems for police and the emergency services.

For top broadband policy, look no further than Canada

Aug 20, 2014

You might have seen communications minister Malcolm Turnbull raising the issue about Australian press not discussing policy problems and solutions from overseas, in a speech delivered at the Lowy Institute Media Awards last week: ...

Cities, states face off on municipal broadband

Aug 19, 2014

Wilson, N.C., determined nearly a decade ago that high-speed Internet access would be essential to the community's social and economic health in the 21st century, just as electricity, water and sewers were in the previous ...

New loss mechanism for global 4G roaming

Aug 19, 2014

A loss mechanism that has not been an issue in previous mobile handset antennas will become important for global 4G roaming, according to results of experiments carried out in Aalborg, Denmark.

User comments : 0