New geometries: Researchers create new shapes of artificial microcompartments

Dec 12, 2012

(Phys.org)—In nature, biological functions are often carried out in tiny protective shells known as microcompartments, structures that provide home to enzymes that convert carbon dioxide into energy in plant cells and to viruses that replicate once they enter the cell.

Most of these shells buckle into an icosahedron shape, forming 20 sides that allow for high interface with their surroundings. But some shells—such as those found in the single-celled or simple, salt-loving organisms called halophiles —break into triangles, squares, or non-symmetrical geometries. While these alternate geometries may seem simple, they can be incredibly useful in biology, where low symmetry can translate to higher functionality.

Researchers at Northwestern University have recently developed a method to recreate these shapes in artificial microcompartments created in the lab: by altering the acidity of their surroundings. The findings could lead to designed microreactors that mimic the functions of these cell containers or deliver therapeutic materials to cells at specific targeted locations.

"If you want to design a very clever capsule, you don't make a sphere. But perhaps you shouldn't make an icosahedron, either," said Monica Olvera de la Cruz, Lawyer Taylor Professor of , Chemistry, and (by courtesy) Chemical and Biological Engineering at Northwestern's McCormick School of Engineering and one of the paper's authors. "What we are beginning to realize is maybe these lower symmetries are smarter."

To create the new shell geometries, the researchers co-assembled oppositely charged lipids with variable degrees of ionization and externally modified the surrounding electrolyte. The resulting geometries include fully faceted regular and irregular polyhedral, such as square and triangular shapes, and mixed Janus-like with faceted and curved domains that resembled cellular shapes and shapes of halophilic organisms.

Explore further: 'Mind the gap' between atomically thin materials

More information: A paper about the research, "Molecular Crystallization Controlled by pH Regulates Mesoscopic Membrane Morphology," was published November 27 in the journal ACS Nano. pubs.acs.org/doi/abs/10.1021/nn304321w

Related Stories

Researchers discover new shapes of microcompartments

Mar 04, 2011

In nature and engineering, microcompartments — molecular shells made of proteins that can encapsulate cellular components — provide a tiny home for important reactions. In bacterial organelles, for example, microcompartments ...

Recommended for you

'Mind the gap' between atomically thin materials

8 hours ago

In subway stations around London, the warning to "Mind the Gap" helps commuters keep from stepping into empty space as they leave the train. When it comes to engineering single-layer atomic structures, minding ...

Paper electronics could make health care more accessible

Nov 19, 2014

Flexible electronic sensors based on paper—an inexpensive material—have the potential to some day cut the price of a wide range of medical tools, from helpful robots to diagnostic tests. Scientists have ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.