Geographic complexity explains patterns of spread of white-nose syndrome in bats, study finds

Dec 19, 2012 by Lori King

(Phys.org)—The spread of white-nose syndrome, an emerging fungal disease in bats, may be determined by habitat and climate, scientists at the University of Georgia have found.

Using data about the spread of white-nose syndrome to date, postdoctoral researcher Sean P. Maher and colleagues at the Odum School of Ecology made a showing that cave-hibernating species of bats in areas with are most vulnerable to the disease. Their study in Nature Communications finds simulations suggest that white-nose syndrome is likely to spread rapidly among vulnerable populations, reaching a peak in 2015-2016.

Bats are ecologically and economically important animals. They fly at night, consuming insects by the ton. For instance, a single individual of one of the vulnerable populations, the little , can eat over 1,000 in an hour. According to an estimate released by the U.S. Geological Survey, bats can save farmers up to $50 billion a year in caused by .

White-nose syndrome is a of bats first identified in 2006. Since then, it has spread westward from the northeastern U.S., decreasing some by 80 percent, the U.S. Geological Survey estimates.

Very little is known about white-nose syndrome, so combating the disease will require gaining an understanding of how it spreads, Maher said.

He and his colleagues started by comparing disease dispersal models. Once they found the model that best fit with the existing data about the spread of white-nose syndrome, they began adding more variables relating specifically to geography and habitat. They found that a disease dispersal model that includes variables for habitat () and climate (specifically, the length of winter) best fit the data. From there, they could simulate the future spread of the disease.

As well as new infections peaking in 2015-2016, their simulations suggest that most areas of the U.S. with caves may be infected within the next 100 years.

According to Maher, one of the most significant findings here is a new view of how a disease can spread. The authors moved from a broad view of the data to an understanding of some of the geographic features that can influence how the disease proliferates.

"Most disease models are made after the fact, whereas here the authors were able to model disease dispersal "as it's happening," said study coauthor Andrew M. Kramer, who also is a postdoctoral researcher in the Odum School.

The model is only part of the story, however. The authors were not able to include data from Canadian bats in their model, which could affect the results. Also, the model does not completely explain the mechanism of dispersal. For instance, "although the model is consistent with the data, it cannot tell us whether closing caves, as some have advocated, will check the spread of white-nose syndrome," Maher said.

Still, according to Kramer, the authors hope that their paper can guide further research into this potentially devastating disease in bats.

Explore further: New England Aquarium offering penguins 'honeymoon suites'

Related Stories

Culling can't control deadly bat disease

Feb 14, 2011

Culling will not stop the spread of a deadly fungus that is threatening to wipe out hibernating bats in North America, according to a new mathematical model.

Up to 6.7 million bats dead from fungus: US

Jan 17, 2012

Between 5.7 and 6.7 million bats have died in North America due to a fungus known as white-nose syndrome (WNS) since the disease first appeared in 2006, US authorities said on Tuesday.

Recommended for you

Telling the time of day by color

Apr 17, 2015

Research by scientists at The University of Manchester has revealed that the colour of light has a major impact on how the brain clock measures time of day and on how the animals' physiology and behavior adjust accordingly. ...

Aphrodisiac for fish and frogs discovered

Apr 17, 2015

A supplement simply added to water has been shown to boost reproduction in nematodes (roundworms), molluscs, fish and frogs – and researchers believe it could work for humans too.

Evolution puts checks on virgin births

Apr 17, 2015

It seems unnatural that a species could survive without having sex. Yet over the ages, evolution has endowed females of certain species of amphibians, reptiles and fish with the ability to clone themselves, ...

Humans can't resist those puppy-dog eyes

Apr 16, 2015

When humans and their four-legged, furry best friends look into one another's eyes, there is biological evidence that their bond strengthens, researchers report.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.