New funding to research 'super material' graphene

Dec 27, 2012

Scientists at Imperial College London are set to receive over £4.5 million of public funding to investigate how the 'super material' graphene can drive improvements in high-tech industries, such as aerospace design and medical technologies.

The Chancellor of the Exchequer, George Osborne MP, today announced £21.5 million of capital investment to commercialise , one of the thinnest, lightest, strongest and most conductive materials to have been discovered, marked by the 2010 as one of the world's most ground breaking scientific achievements.

Three research projects at Imperial will share the Engineering and Physical Sciences Research Council (EPSRC) funding as part of a new programme with a number of industrial partners, including aeroplane manufacturer Airbus. The scientists receiving the grant hope to develop graphene technologies that will contribute to the and can be applied by industries around the world.

Professor Neil Alford, deputy principal for research in Imperial's Faculty of Engineering, who is playing a key role in one of the new projects, said: "This is a tremendous opportunity for UK science and industry. The new funding will enable us to bring graphene a step closer to useful applications, by helping us explore the physical and mechanical properties of this remarkable material, as well as its behaviour at high frequency."

In one project worth £1.35 million, led by Professor Tony Kinloch from the Department of Mechanical Engineering with colleagues from the Departments of Chemistry and Chemical Engineering, researchers will explore how combining graphene with current materials can improve the properties of aeroplane parts, such as making them resistant to lightning-strikes. They hope the same technology can also be used to develop coatings for wind-turbine blades, to make them scratch resistant and physically tougher in .

Professor Eduardo Saiz, from the Department of Materials, will develop new manufacturing processes using liquids that contain tiny suspended particles of graphene, in order to reduce the cost of currently expensive industrial techniques. This project will receive £1.91 million funding and involves scientists from Imperial's Departments of Chemistry and Chemical Engineering, and Queen Mary, University of London.

£1.37 million of funding received by Professor Norbert Klein, also from the Department of Materials and shared with Imperial's Department of Physics, will pay for new equipment to deposit extremely thin sheets of graphene, so scientists can explore its electrical properties. They hope that new medical scanning technology may be developed as a result of how graphene responds to high frequency electromagnetic waves, from microwave to terahertz frequencies and all the way to the wavelengths of visible light.

Professor Alford said: "At Imperial we will use the to build on first class research that crosses several College departments to vastly improve current technologies such as catalysis, supercapacitors, membranes, multifunctional polymer and ceramic composites and a whole range of applications at microwave and optical frequencies. We will work on improving the mechanical properties of composite materials, and addressing the electrical properties of devices, to develop exceptionally sensitive sensors for a range of applications in environmental monitoring and the medical sciences."

Explore further: Researchers make major advances in dye sensitized solar cells

add to favorites email to friend print save as pdf

Related Stories

Engineers discover graphene's weakness

Dec 09, 2010

(PhysOrg.com) -- If you owned a mechanical device made out of the strongest material known to mankind, wouldn’t you want to know under what circumstances it might fail?

Graphene's 'Big Mac' creates next generation of chips

Oct 09, 2011

The world's thinnest, strongest and most conductive material, discovered in 2004 at the University of Manchester by Professor Andre Geim and Professor Kostya Novoselov, has the potential to revolutionize material ...

Graphene applications in electronics and photonics

Nov 02, 2011

Graphene, which is composed of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice (like atomic-scale chicken wire), is the world's thinnest material – and one of the hardest and strongest. Indeed, the ...

A roadmap for graphene

Oct 10, 2012

Wonder material graphene could not only dominate the electronic market in the near future, it could also lead to a huge range of new markets and novel applications, a landmark University of Manchester paper ...

Recommended for you

Nanomaterial outsmarts ions

Apr 22, 2014

Ions are an essential tool in chip manufacturing, but these electrically charged atoms can also be used to produce nano-sieves with homogeneously distributed pores. A particularly large number of electrons, ...

User comments : 0

More news stories

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.