Fat influences decisions taken by brain cells for production and survival

Dec 23, 2012

Scientists at Karolinska Institutet in Sweden have identified two molecules that play an important role in the survival and production of nerve cells in the brain, including nerve cells that produce dopamine. The discovery, which is published in the journal Nature Chemical Biology, may be significant in the long term for the treatment of several diseases, such as Parkinson's disease.

The same scientists have previously shown that receptors known as "liver X receptors" or LXR, are necessary for the production of different types of nerve cells, or neurons, in the developing ventral midbrain. One these types, the midbrain dopamine-producing neurons play an important role in a number of diseases, such as Parkinson's disease.

What was not known, however, was which molecules stimulate LXR in the midbrain, such that the production of new nerve cells could be initiated. The scientists have used mass spectrometry and systematic experiments on and mice to identify two molecules that bind to LXR and activate it. These two molecules are named cholic acid and 24,25-EC, and are and a derivate of cholesterol, respectively. The first molecule, cholic acid, influences the production and survival of neurons in what is known as the "red nucleus", which is important for incoming signals from other . The other molecule, 24,25-EC, influences the generation of new dopamine-producing , which are important in controlling movement.

One important conclusion of the study is that 24,25-EC can be used to turn into midbrain dopamine-producing neurons, the cell type that dies in Parkinson's disease. This finding opens the possibility of using cholesterol derivates in future , since new dopamine-producing cells created in the laboratory could be used for transplantation to patients with Parkinson's disease.

"We are familiar with the idea of cholesterol as a fuel for cells, and we know that it is harmful for humans to consume too much cholesterol", says Ernest Arenas, Professor of Stem Cell Neurobiology at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet, who led the study. "What we have shown now is that cholesterol has several functions, and that it is involved in extremely important decisions for neurons. Derivatives of cholesterol control the production of new neurons in the developing brain. When such a decision has been taken, cholesterol aids in the construction of these new cells, and in their survival. Thus cholesterol is extremely important for the body, and in particular for the development and function of the brain."

Explore further: New tool identifies therapeutic proteins in a 'snap'

More information: 'Brain endogenous liver X receptor ligands selectively promote midbrain neurogenesis', Spyridon Theofilopoulos, Yuqin Wang, Satish Srinivas Kitambi, Paola Sacchetti, Kyle M Sousa, Karl Bodin, Jayne Kirk, Carmen Saltó, Magnus Gustafsson, Enrique M Toledo, Kersti Karu, Jan-Åke Gustafsson, Knut R Steffensen, Patrik Ernfors, Jan Sjövall, William J Griffiths, and Ernest Arenas, Nature Chemical Biology, Advance Online Publication 23 December 2012, doi: 10.1038/nchembio.1156

Related Stories

Cholesterol necessary for brain development

Oct 02, 2009

A derivative of cholesterol is necessary for the formation of brain cells, according to a study from the Swedish medical university Karolinska Institutet. The results, which are published in the journal Cell Stem Cell, can he ...

Dopamine controls formation of new brain cells

Apr 08, 2011

(PhysOrg.com) -- A study of the salamander brain has led researchers at Karolinska Institutet to discover a hitherto unknown function of the neurotransmitter dopamine. In an article published in the prestigious scientific ...

Toward new medications for chronic brain diseases

Apr 20, 2011

A needle-in-the-haystack search through nearly 390,000 chemical compounds had led scientists to a substance that can sneak through the protective barrier surrounding the brain with effects promising for new drugs for Parkinson's ...

A new type of nerve cell found in the brain

Dec 21, 2012

Scientists at Karolinska Institutet in Sweden, in collaboration with colleagues in Germany and the Netherlands, have identified a previously unknown group of nerve cells in the brain. The nerve cells regulate ...

Recommended for you

New tool identifies therapeutic proteins in a 'snap'

Aug 21, 2014

(Phys.org) —In human and bacterial cells, glycosylation – the chemical process of attaching complex sugar molecules to proteins – is as fundamental as it gets, affecting every biological mechanism from cell signaling ...

Treating pain by blocking the 'chili-pepper receptor'

Aug 20, 2014

Biting into a chili pepper causes a burning spiciness that is irresistible to some, but intolerable to others. Scientists exploring the chili pepper's effect are using their findings to develop a new drug ...

Moving single cells around—accurately and cheaply

Aug 19, 2014

Scientists at the Houston Methodist Research Institute have figured out how to pick up and transfer single cells using a pipette—a common laboratory tool that's been tweaked slightly. They describe this ...

The difficult question of Clostridium difficile

Aug 19, 2014

The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the hu ...

User comments : 0