Discovery of 100 million-year-old regions of DNA shows short cut to crop science advances

Dec 05, 2012

(Phys.org)—Scientists have discovered 100 million-year-old regions in the DNA of several plant species which could hold secrets about how specific genes are turned 'on' or 'off'.

The findings, which are hoped will accelerate the pace of research into and food security, are detailed by University of Warwick researchers in the journal The .

By running a of the genomes of the papaya, poplar, and grape species, scientists have uncovered hundreds of conserved non-coding sequences which are found in the DNA of all four species.

These non-coding sequences are not genes, but are located in the promoters upstream of genes and are around 100 in length.

As the four species have evolved separately for around 100 million years, the fact that these regions have been conserved suggests they play an important role in the plants' development and functioning.

The team at the University of Warwick believe these regions are involved in controlling the expression of the genes they are upstream of - in other words determining whether the genes are turned 'on' or 'off' according to the environmental conditions or of the plant.

This video is not supported by your browser at this time.

For example, some genes will be required for defence against pathogens, or others will be required for germination.

Dr Sascha Ott of the Warwick Centre said: "We know that certain genes are conserved between species – but we also see that sequences outside of genes are conserved.

"The regions outside genes that we have discovered have been kept for millions and millions of years across four species.

"There must be a reason for this – if something has been around for so long it is probably useful in some way.

"We believe it may be because these regions have a very important role to play in how the plant develops and functions.

"It is likely that they are involved in controlling – a vital area for scientists to study as it will ultimately help us to develop crops with specific properties, for example drought tolerance.

"By pinpointing these specific regions, we have zoomed in on what seems to be a very old, and very important, part of DNA.

"We have opened up a short-cut as with this information, the biology community can now focus their experiments on specific regions next to genes which are key targets for plant breeding, and could play an important part in addressing the issue of food security.

"This discovery can be used to underpin future research focusing on working out regulatory codes and link sequence patterns to expression patterns."

The paper, "Conserved Noncoding Sequences Highlight Shared Components of Regulatory Networks in Dicotyledonous Plants" is published online here.

Explore further: Heaven scent: Finding may help restore fragrance to roses

Related Stories

Scientists Shed Light on Evolution of Gene Regulation

Nov 25, 2008

Scientists at Penn State have shed light on some of the processes that regulate genes -- such as the processes that ensure that proteins are produced at the correct time, place, and amount in an organism -- ...

Comparing Chimp, Human DNA

Oct 12, 2006

Most of the big differences between human and chimpanzee DNA lie in regions that do not code for genes, according to a new study. Instead, they may contain DNA sequences that control how gene-coding regions are activated ...

Researchers Shed Light on Evolution of Gene Regulation

Nov 18, 2008

(PhysOrg.com) -- Scientists at Penn State have shed light on some of the processes that regulate genes -- such as the processes that ensure that proteins are produced at the correct time, place, and amount ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.