Composites for large-scale manufacturing

Dec 10, 2012
Using the ENGEL e-victory 120, thermoplastic composite structures can be mass-produced using the injection molding process. Credit: ENGEL

Continuous fiber-reinforced composites with thermoplastic matrix resins are very well suited for use in automotive manufacturing. However, to manufacture them is complicated. A new approach now makes it possible to use the injection molding process.

To date, it has been very laborious to manufacture fiber-reinforced composites with a thermoplastic matrix in large quantities. On the one hand, the textile-like dense continuous fiber-reinforced structures are difficult to shape, on the other, joining the continuous with a highly viscous thermoplastic matrix material is a highly complex process. To date, there is no economically profitable for large-volume component series.

Adapted injection molding process

Together with the injection molding machine manufacturer ENGEL Austria GmbH, the scientists of the Fraunhofer Institute for ICT in Pfinztal (Germany) have, for the first time, brought a technology to production readiness that allows the series production of such continuous fiber-reinforced thermoplastic composites with an . So far, it has only been possible to use the injection molding process for fiber-reinforced composites made of short fibers or long fibers. "Continuous fiber-reinforced with a thermoplastic matrix are becoming increasingly popular, and will be used increasingly in the automotive industry", states Dr.-Ing. Lars Fredrik Berg, scientist and project manager at the ICT. "With the injection molding process, components that have high fiber contents by volume and therefore outstanding can be produced efficiently in high volume series".

Based on the results of their own research, the scientists of the ICT developed, together with ENGEL, a prototype machine for injection molding. The ENGEL e-victory 120 can handle all the necessary working steps in a single machine. The reactive components are prepared and mixed, and the material is injected into the molding die. The in-situ polymerization also takes place in it, after the textile reinforcement structures have been introduced. "The ICT and ENGEL have developed a robust, compact and fully automated technological system to series readiness that is flexible and quick at the same time. It is exactly this technology that the has been lacking for continuous fiber-reinforced thermoplastic composite structures. The process, which to date had been distributed across several machines, can now be carried out on a single one", says Dipl.-Ing. Peter Egger, Head of the Technology Center for Lightweight Composites at ENGEL. e-victory has already passed its first crucial test: Engel produced, as an example, a brake pedal insert made of fiber glass-reinforced polyamide for the automotive supplier ZF Friedrichshafen.

Endless fiber structures wetted out ideally

In contrast to the processes for fiber composite materials to date, where only short fibers could be processed, continuous fiber-reinforced composite structures can be fed into the e-victory and be impregnated with a very low viscosity plastics matrix. "We have developed a process in which the in-situ polymerization of thermoplastic matrix materials works. We allow monomers, which are highly reactive molecules, to polymerize directly in the machine. The monomers have a shorter molecule chain than polymers, and therefore a lower viscosity. When being processed, the viscosity of the reactive plastics matrix is similar to that of water. This means that the fiber structures can be wetted down in an ideal manner, without displacing the structures in the form", explains Berg. In October the Reinforced Plastics Industrial Association AVK awarded the ICT and ENGEL an AVK Innovation Prize in the "Processes" category for this new technology.

Explore further: Wireless sensor transmits tumor pressure

add to favorites email to friend print save as pdf

Related Stories

Making vehicles safer

Aug 11, 2010

A car’s crash components can spell the difference between life and death. Their job is to absorb energy in a collision in order to protect the driver inside. Researchers have now found a way for the automotive industry ...

Tape laying gets closer to series production

Oct 05, 2012

Increasingly, metals in cars and airplanes are being replaced by fiber-reinforced plastics. Producing these materials using tape laying offers several advantages. Scientists are now working on readying this ...

Smart aircraft wings and new lightweight construction materials

Mar 26, 2008

At the JEC Composites Show 2008 to be held in Paris from April 1 to 3, Fraunhofer researchers will be exhibiting an aircraft wing that immediately detects any material damage. Another showcased development is a novel fiber-composite ...

Made easy with light

Mar 23, 2010

(PhysOrg.com) -- Lightweight, sturdy, and non-corrosive: fiber-reinforced thermoplastics are an ideal material for making boats and cars, and for aerospace engineering. But up to now, processing the raw materials ...

Wheel in a corset

Sep 22, 2010

Are lightweight construction materials suitable for extremely stressed and safety-relevant components such as car wheel? Tests and calculations show that fiber-reinforced plastics are highly damage-tolerant ...

Recommended for you

Wireless sensor transmits tumor pressure

22 hours ago

The interstitial pressure inside a tumor is often remarkably high compared to normal tissues and is thought to impede the delivery of chemotherapeutic agents as well as decrease the effectiveness of radiation ...

Seeing through the fog (and dust and snow) of war

Sep 19, 2014

Degraded visibility—which encompasses diverse environmental conditions including severe weather, dust kicked up during takeoff and landing and poor visual contrast among different parts of terrain—often ...

The oscillator that could makeover the mechanical watch

Sep 18, 2014

For the first time in 200 years the heart of the mechanical watch has been reinvented, thereby improving precision and autonomy while making the watch completely silent. EPFL researchers have developed an ...

User comments : 0