Researchers identify new components of the epigenetic 'code' for honey bee development

Dec 11, 2012
Honeybee

Researchers from the UK and Australia have uncovered a new element of the honeybee's genetic makeup, which may help to explain why bees are so sensitive to environmental changes.

Scientists from the University of Sheffield, Queen Mary, University of London and the Australian National University, have found that honeybees have a 'histone code' – a series of marks on the histone proteins around which their DNA is wrapped in order to fit into the nucleus of a cell. This code is known to exist in humans and other complex organisms in order to control changes in cell development – but this is the first time it's been discovered in the . Histone codes can also be affected by nutrition and environmental factors, so the scientists believe the finding may be another part of the puzzle to explain how eating royal jelly ensures honeybee larvae turn into queens and not workers.

"The development of different bees from the same DNA in the larvae is one of the clearest examples of epigenetics in action – mechanisms that go beyond the basic DNA sequence," explains Dr Mark Dickman from the University of Sheffield's Faculty of Engineering. "From our knowledge of how the histone code works in other organisms, we think that the marks on the might act as one of the switches that control how the larvae develop."

The scientists believe their findings will open the door to further study of the interplay between environment, nutrition and how the develops. The first step will be to identify exactly how larval diet influences the histone code to ensure development into either a queen or a sterile worker.

But the potential impact is much wider, as Dr Paul Hurd, from Queen Mary's School of Biological and Chemical Sciences, explains; "Indirect dietary-mediated effects are also of particular relevance to . Prime examples are from systemic pesticides used on , which accumulate inside nectar and pollen and therefore enter honey bee diet, in some cases with detrimental effect. By studying the impact of diet and particular chemicals on the during honey bee development and behaviour, we may be able to identify how certain pesticides contribute to the decline of some colonies."

Professor Maleszka of the Australian National University adds; "We really need to begin looking beyond classical genetics to understand many of the current problems honey bees face including Colony Collapse Disorder. There are rarely single genes that cause a given disease; it's more often interactions between a number of genes that's heavily influenced by environmental factors. Histone codes are flexible and have the capacity to act as an interface between genome and environment".

Explore further: Researchers collect soil samples from around the globe in effort to conduct fungi survey

More information: Extensive histone post-translational modification in honey bees by Mark J. Dickman, Robert Kucharski, Ryszard Maleszka, and Paul J. Hurd is in press and due to appear in a future issue of Insect Biochemistry and Molecular Biology. It is published online at: dx.doi.org/10.1016/j.ibmb.2012.11.003

Related Stories

Royal jelly makes bee queens, boosts nurture case

Mar 14, 2008

New Australian National University research may explain why eating royal jelly destines honeybee larvae to become queens instead of workers – and in the process adds new weight to the role of environmental factors in the ...

Enhanced royal jelly produces jumbo queen bee larvae

Jul 18, 2012

Scientists have discovered a way to make worker bees produce an enhanced version of royal jelly (RJ) – the super-nutritious substance that dictates whether larvae become workers or queens, and that is ...

Insulin signaling key to caste development in bees

Jul 14, 2010

What makes a bee grow up to be a queen? Scientists have long pondered this mystery. Now, researchers in the School of Life Sciences at Arizona State University have fit a new piece into the puzzle of bee development. ...

Honey bees: Genetic labeling decides about blue blood

Nov 03, 2010

Queen bees and worker bees share the same genome, but they are different in the chemical labeling of about 550 genes. This has been discovered by scientists of the German Cancer Research Center jointly with ...

Bees reveal nature-nuture secrets

Nov 02, 2010

The nature-nurture debate is a "giant step" closer to being resolved after scientists studying bees documented how environmental inputs can modify our genetic hardware. The researchers uncovered extensive ...

Recommended for you

Male sex organ distinguishes 30 millipede species

14 hours ago

The unique shapes of male sex organs have helped describe thirty new millipede species from the Great Western Woodlands in the Goldfields, the largest area of relatively undisturbed Mediterranean climate ...

Dogs hear our words and how we say them

Nov 26, 2014

When people hear another person talking to them, they respond not only to what is being said—those consonants and vowels strung together into words and sentences—but also to other features of that speech—the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.