New cell-based system can screen drug candidates for cardiac toxicity long before they leave lab

Dec 17, 2012

A new stem cell-derived system for screening experimental drugs for cardiotoxicity could identify dangerous side effects early in the development process, thereby potentially saving time, lives and money, according to Evan F. Cromwell, PhD, of Molecular Devices, LLC, Sunnyvale, CA, in a presentation at the American Society for Cell Biology's Annual Meeting, Dec 17 in San Francisco.

Vioxx is probably the most notorious example of a removed from the market after because of adverse cardiac side effects, Dr. Cromwell explained, but it was not the only drug to fail because of unexpected negative effects on the heart.

Cardiotoxicity remains one of the primary reasons wash out in preclinical or even full clinical trials, he said. There is often a huge cost for these failures, both to the whose long-term investments can be wiped out in a single study and to consumers who face the risk of unintended harm.

Currently cardiotoxicity is detected using electrophysiology-based assays for interactions of compounds with potassium ion channels. However, available assays are not effective at assessing potential adverse interactions with other biochemical or contractile processes.

The need for better cardiotoxicity assays more predictive of myocardial performance led Dr. Cromwell, Oksana Sirenko, PhD, and colleagues at the California biotech, , to develop an in vitro system that employs stem cell-derived cardiomyocytes to screen for potential adverse cardiac effects.

Stem cell-derived cardiomyocytes are especially suitable for an in vitro system, Dr. Cromwell explains, because they express ion channels vital for the cardiomyocytes' function and demonstrate spontaneous mechanical and similar to that of native . When these cultured cardiomyocytes form a confluent layer and reach sufficient maturity, they begin to contract spontaneously. The team then employs a fast kinetic fluorescence imaging method to monitor fluctuations in intracellular calcium ion (Ca2+) levels during contractions. This provides a direct assessment of Ca2+ handling with surrogate assessments of electrophysiological activity in the muscle cell membrane and beat rate.

Phenotypic deviations from normal contractions that can be measured in the improved assay include beat rate, peak width and pattern irregularities. This multiparametric characterization of a compound's perturbation of cardiomyocyte contractions can also yield insights into mechanisms of action (MOA).

Dr. Cromwell reports, "We have characterized numerous pharmacological compounds and detected concentration-dependent modulation of beating rate and atypical patterns consistent with their MOA." This assay shows great promise to exclude preclinical candidates that have cardiotoxicity or other cardio safety issues, according to Dr. Cromwell.

Explore further: Fighting bacteria—with viruses

More information: "Predictive assays for high throughput assessment of cardiac toxicity and drug safety," Sunday, Dec.16, 2012, 2- 3:30 pm, Session: New Technologies for Cell Biology I, presentation: 938, poster: B1496

add to favorites email to friend print save as pdf

Related Stories

The birth of new cardiac cells

Dec 05, 2012

Recent research has shown that there are new cells that develop in the heart, but how these cardiac cells are born and how frequently they are generated remains unclear. In new research from Brigham and Women's Hospital (BWH), ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0