Study suggests the bacterial ecology that lives on humans has changed in the last 100 years

Dec 13, 2012

A University of Oklahoma-led study has demonstrated that ancient DNA can be used to understand ancient human microbiomes. The microbiomes from ancient people have broad reaching implications for understanding recent changes to human health, such as what good bacteria might have been lost as a result of our current abundant use of antibiotics and aseptic practices.

Cecil M. Lewis Jr., professor of anthropology in the OU College of Arts and Sciences and director of the OU Molecular Anthropology Laboratory, and Raul Tito, OU Research Associate, led the research study that analyzed microbiome data from ancient human collected from three different in the Americas, each dating to over 1000 years ago. In addition, the team provided a new analysis of published data from two samples that reflect rare and extraordinary preservation: Otzi the Iceman and a soldier frozen for 93 years on a glacier.

"The results support the hypothesis that ancient microbiomes are more similar to those of non-human primates and rural non-western communities than to those of people living a modern lifestyle in the United States," says Lewis. "From these data, the team concluded that the last 100 years has been a time of major change to the human gut microbiome in cosmopolitan areas."

", as well as the widespread adoption of various aseptic and antibiotic practices have largely benefited modern humans, but many studies suggest there has been a cost, such as a recent increase in autoimmune related risks and other health states," states Lewis.

"We wish to reveal how this co- between humans and bacteria has changed, while providing the foundation for interventions to reconstruct what has been lost. One way to do this is to study remote communities and non-human primates. An alternative path is to look at ancient samples and see what they tell us," Lewis says.

"An argument can be made that remote traditional communities are not truly removed from modern human ecologies. They may receive milk or other food sources from the government, which could alter the microbial ecology of the community. Our evolutionary cousins, non-human primates are important to consider. However, the human-chimp common ancestor was over six million years ago, which is a lot of time for microbiomes to evolve distinct, human signatures."

Retrieving ancient human microbiome data is complementary to these studies. However, studying ancient microbiomes is not without problems. Assuming DNA preserves, there is also a problem with contamination and modification of ancient samples, both from the soil deposition, and from other sources, including the laboratory itself.

"In addition to laboratory controls in our study, we use an exciting new quantitative approach called source tracking developed by Dan Knights from Rob Knight's Laboratory at the University of Colorado in Boulder, which can estimate how much of the ancient microbiome data is consistent with the human gut, rather than other sources, such as soil," explains Lewis.

"We discovered that certain samples have excellent gut microbiome signatures, opening the door for deeper analyses of the ancient human gut, including a better understanding of the ancient humans themselves, such as learning more about their disease burdens, but also learning more about what has changed in our gut today."

Explore further: Brand new technology detects probiotic organisms in food

More information: The paper, "Insights from Characterizing Extinct Human Gut Microbiomes," will be published in the journal PLOS ONE.

Related Stories

Dead guts spill history of extinct microbes

Dec 12, 2012

Extinct microbes in fecal samples from archaeological sites across the world resemble those found in present-day rural African communities more than they resemble the microbes found in the gut of cosmopolitan ...

Recommended for you

Fighting bacteria—with viruses

2 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

2 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0