Astronomers identify the stellar patrons of the Milky Way bar

Dec 19, 2012
A map of the innermost Milky Way, with circles marking the regions explored by the SDSS-III APOGEE project. Circles marked with "X" show places where the project found high-speed stars associated with the Milky Way's bar moving away from Earth. The lighter regions marked with dots on the other side of the Galactic Center show places where the fourth-generation Sloan Digital Sky Survey hopes to find counterpart bar stars moving toward the Earth. Credit: David Nidever (University of Michigan / University of Virginia) and the SDSS-III Collaboration. Background image from the Two-Micron All Sky Survey Image Mosaic (Infrared Processing and Analysis Center/Caltech & University of Massachusetts).

(—Forget the restaurant at the end of the Universe—astronomers now have the clearest understanding yet of the bar at the center of the Milky Way.

Scientists with the Sloan Digital Sky Survey III (SDSS-III) have announced the discovery of hundreds of rapidly moving together in long, looping orbits around the center of our Galaxy. "The best explanation for their orbits is that these stars are part of the Milky Way bar," says David Nidever, a Dean B. McLaughin Fellow in the Astronomy Department at the University of Michigan. "We know that the bar plays an important role in determining the structure of the Galaxy, so learning more about these stars will help us understand the whole Galaxy, even out here in the spiral arms."

The team's discovery came from accurately measuring the speeds of thousands of stars near the center of the Milky Way. The center of our Galaxy is 30,000 light-years away—close by cosmic standards—yet we know surprisingly little about it, because the Galaxy's hides it from view. In spite of this , though, we do know a key fact about our Galaxy: like many spiral , the Milky Way has a 'bar' of stars that orbit together around the Galactic Center.

"We know of the bar's existence from many separate lines of evidence," says Gail Zasowski, a National Science Foundation postdoctoral Fellow at The Ohio State University. "What we don't know is which stars are part of the bar, and what the velocities of those stars are. That information will help us understand how the bar formed, and how its stars relate to the stars in the rest of the Galaxy."

An artist's impression of what the Milky Way might look like viewed from above. The small blue dot is where we are on Earth (not to scale). The solid red arrows show the high-speed stars moving away from Earth that were discovered by SDSS-III. The dashed arrows show the stars moving toward Earth that are expected to be seen by the fourth-generation Sloan Digital Sky Survey. Credit: Jordan Raddick (Johns Hopkins University) and Gail Zasowski (The Ohio State University / University of Virginia). Milky Way artist's concept by NASA/JPL-Caltech/R. Hurt (SSC-Caltech).

The trouble is that there is no obvious way to tell a star in the Milky Way's bar apart from any other star in the same neighborhood. Instead, the key to finding bar stars is to measure the velocities of many stars, then see whether some of those stars are moving together in some unusual pattern. Although blocks nearly all visible light, longer infrared wavelengths can partially shine through. So a survey of stellar positions and velocities that operates in infrared light could finally pierce the veil of dust, and collect data from enough stars in the innermost Milky Way to firmly identify which ones are part of the bar.

Enter SDSS-III's new Apache Point Galactic Evolution Experiment (APOGEE). APOGEE uses a custom-built high-resolution infrared spectrograph attached to the 2.5-meter Sloan Foundation Telescope in New Mexico, and is capable of measuring the velocities and chemical compositions of up to 300 stars at once. "What separates APOGEE from previous spectroscopic surveys is that we are studying the Galaxy using infrared light," Nidever says. APOGEE began observations in June 2011 and has already observed more than 48,000 stars all over our galaxy.

In a paper published recently in the Astrophysical Journal, a worldwide team of scientists including Nidever and Zasowski used data from the first few months of APOGEE observations to measure the velocities for nearly 5,000 stars near the . With these velocity measurements, they assembled a picture of how these stars the center of the Milky Way. However, quite unexpectedly, they found that a substantial fraction of stars in the inner Galaxy are moving away from us quickly—about 10 percent of the total stars in their sample are moving at more than 200 kilometers per second (400,000 miles per hour) away from the Earth. The observed pattern of these fast stars is similar in many different parts of the inner Galaxy, and is the same above and below the midplane of the Galaxy—suggesting that these measurements of fast central stars are not just a statistical fluke, but really are a feature of our Galaxy.

The team then compared their observations with the predictions of the bar stars from the latest computer models of the Galaxy—and the observations matched the predictions closely. "Based on the evidence from the model comparisons, I am now confident that these fast-moving stars are part of the bar," Nidever says. "I was actually quite surprised that they showed up so clearly in our survey.

APOGEE's identification of which stars are part of the bar will allow astronomers to study how stars in the bar and in the rest of the galaxy react to one another. "The bar acts like a giant mixer for our galaxy," says Steven Majewski, a professor of astronomy at the University of Virginia and the principal investigator for the APOGEE project. "As the bar rotates, it churns up the motions of nearby stars. Over time, this mixing should have a large effect on the disk of our galaxy, including in where we live, but this effect is not well understood. This new sample of definitively-identified bar stars gives us a unique opportunity to learn more about exactly how this giant blender mixes up our galaxy."

But the team's discovery only tells half the story. So far, APOGEE has only observed one side of the bar, the side where the stars are moving away from the Earth. On the other side, the stars must be moving toward Earth. But unfortunately, the Sloan telescope is inconveniently placed: the other half of the Milky Way bar is visible only from Earth's southern hemisphere. Seeing the other side of the is one of the motivations for a planned fourth generation of the Sloan Digital Sky Survey. Part of this successor project will implement the same techniques using a 2.5-meter telescope in Chile to observe the rest of the inner Milky Way. The new survey is set to begin in 2014.

Explore further: Far from home: Wayward cluster is both tiny and distant

More information: D.L. Nidever, G. Zasowski, S.R. Majewski, J. Bird, A.C. Robin, I. Martinez-Valpuesta, R.L. Beaton, R. Schönrich, Ralph; M. Schultheis, J.C. Wilson, M.F. Skrutskie, R.W. O'Connell, M. Shetrone, R.P. Schiavon, J.A. Johnson, B. Weiner, O. Gerhard, D.P. Schneider, C. Allende Prieto, K. Sellgren, D. Bizyaev, H. Brewington, J. Brinkmann, D.J. Eisenstein, P.M. Frinchaboy, A.E. García Pérez, J. Holtzman, F.R. Hearty, E. Malanushenko, V. Malanushenko, D. Muna, D. Oravetz, K. Pan, A. Simmons, S. Snedden, and B.A. Weaver, 2012,
The Apache Point Observatory Galactic Evolution Experiment: First Detection of High-velocity Milky Way Bar Stars, Astrophysical Journal Letters, 755(2), L25, doi:10.1088/2041-8205/755/2/L25.

Related Stories

NGC 3344: Hubble sees galaxy in a spin

Oct 22, 2012

(—NGC 3344 is a glorious spiral galaxy around half the size of the Milky Way, which lies 25 million light-years distant. We are fortunate enough to see NGC 3344 face-on, allowing us to study its ...

Spitzer sees spider web of stars

Jul 21, 2011

( -- Those aren't insects trapped in a spider's web -- they're stars in our own Milky Way galaxy, lying between us and another spiral galaxy called IC 342. NASA's Spitzer Space Telescope captured ...

Milky Way stars move in mysterious ways

Nov 30, 2010

Rather than moving in circles around the center of the Milky Way, all the stars in our Galaxy are travelling along different paths, moving away from the Galactic center. This has just been evidenced by Arnaud ...

Hubble eyes a loose spiral galaxy

Nov 26, 2012

(—The Hubble Space Telescope has spotted the spiral galaxy ESO 499-G37, seen here against a backdrop of distant galaxies, scattered with nearby stars.

Not all who wander are lost

Jan 09, 2012

( -- Some stars have orbits that take them to interesting places, and they have interesting stories to tell about how they were formed. For more than a decade, the Sloan Digital Sky Survey (SDSS) ...

Recommended for you

Far from home: Wayward cluster is both tiny and distant

22 hours ago

Like the lost little puppy that wanders too far from home, astronomers have found an unusually small and distant group of stars that seems oddly out of place. The cluster, made of only a handful of stars, ...

An old-looking galaxy in a young universe

Mar 02, 2015

A team of astronomers, led by Darach Watson, from the University of Copenhagen used the Very Large Telescope's X-shooter instrument along with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe ...

Giant methane storms on Uranus

Mar 02, 2015

Most of the times we have looked at Uranus, it has seemed to be a relatively calm place. Well, yes its atmosphere is the coldest place in the solar system. But, when we picture the seventh planet in our ...

Where do stars form in merging galaxies?

Mar 02, 2015

Collisions between galaxies, and even less dramatic gravitational encounters between them, are recognized as triggering star formation. Observations of luminous galaxies, powered by starbursts, are consistent ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (4) Jan 04, 2013
""The bar acts like a giant mixer for our galaxy," says Steven Majewski, a professor of astronomy at the University of Virginia and the principal investigator for the APOGEE project."

What is this guy? A baker? Is he making a cake? If he is going to pretend to be an astronomer, he really needs to learn to think.

If our galaxy looks like the picture, the bar is not mixing the batter, it is spewing the batter to the outer arms, like a firework spinner. Just like so many other examples. Still, astronomers can't think with the obvious in front of their eyes. Shame.

And he gives the all too standard line...."Oh this will give us more insight into how things work....blah, blah, blah". I am afraid no amount of data will help these lazy brains.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.