Analysis of ancient raindrop pits offers clues about early Earth atmosphere

Dec 06, 2012 by Bob Yirka report
:water

(Phys.org)—Researchers from NASA's Ames Research Center have presented their findings regarding the study of raindrop imprints left behind in volcanic ash approximately 2.7 billion years ago, at the American Geophysical Union annual meeting in San Francisco. By studying the crater size of the drops left behind, the researchers reported that they have been able to estimate the density of the atmosphere at the time the drops fell.

Scientists have been trying to determine why planet Earth was not colder than evidence suggests during the time period 2.4 to 5 billion years ago. Back then has been estimated to be approximately 30 percent weaker than it is today, thus something else must have either created more heat, or helped conserve the heat that did strike the planet. Most scientists believe the second option is more likely and that it came about due to the atmosphere serving as a blanket to keep heat from dissipating out into space. For that to have happened, the atmosphere would have had to have been much thicker than it is today.

In the presentation, researcher Sanjoy Som suggested that there likely was a lot of nitrogen in the air at the time, but no oxygen – there was no life yet. Instead he suggests, there were likely more greenhouse gasses such as and .

The raindrop indentations were formed, he said, by rain falling on , followed by more falling ash at a site in South Africa. They were hidden for billions of years but then were exposed as slowly removed the rock on top of them. Measuring the crater size allows for calculating the speed at which the drops fell and since prior research has shown that the maximum size of cannot exceed the maximum size of drops that fall today, the researchers have been able to estimate how thick the atmosphere was at the time. They did so by replicating the environment in which the craters were formed – bringing in fresh volcanic ash from Iceland and dropping water from a pipette on it from a platform 25 meters overhead – high enough for the drops to reach their maximum speed, i.e. terminal velocity.

In examining their results the researchers found that if the drops were as large as possible, the atmospheric density at the time would have to have been nearly twice what it is today. But since the largest drops are rare, they suggest the drops were likely smaller and thus the air density would have been very close to what it is today – a finding that indicates that there must have been a significant amount of greenhouse gases in the atmosphere to account for why the planet wasn't colder at the time.

Explore further: Soil nutrients may limit ability of plants to slow climate change

More information: Read also: Fossil raindrop impressions imply greenhouse gases loaded early Earth's atmosphere

Related Stories

Maybe it's raining less than we thought

Jun 11, 2009

It's conventional wisdom in atmospheric science circles: large raindrops fall faster than smaller drops, because they're bigger and heavier. And no raindrop can fall faster than its "terminal speed"—its speed when the ...

Climate change and the rise of atmospheric oxygen

Mar 23, 2006

Today's climate change pales in comparison with what happened as Earth gave birth to its oxygen-containing atmosphere billions of years ago. By analyzing clues contained in rocks, scientists at the Carnegie Institution's ...

Recommended for you

Ocean currents impact methane consumption

13 hours ago

Large amounts of methane - whether as free gas or as solid gas hydrates - can be found in the sea floor along the ocean shores. When the hydrates dissolve or when the gas finds pathways in the sea floor to ...

Study shines new light on the source of diamonds

18 hours ago

A team of specialists from four Australian universities, including the University of Western Australia, has established the exact source of a diamond-bearing rock for the first time.

Source of Earth's ringing? French team views ocean waves

18 hours ago

Three researchers in France have authored "How ocean waves rock the Earth: Two mechanisms explain microseisms with periods 3 to 300 s," published in Geophysical Research Letters, a journal of the Americ ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.