Advance in chromosomal evolution in sea cradles

Dec 12, 2012
This is a live image of the studied sea cradle. Credit: Gaetano Odierna

A chromosomal study performed in a common Mediterranean chiton (sea cradle) provides information, relevant to systematic relationships of the species; furthermore the comparison of its karyotype with ones in literature allows the authors to put forward a hypothesis on chromosome evolution of this group of mollusks. The study was published in the open access journal Comparative Cytogenetics.

The study of chromosome changes arisen during is a current and intriguing topic that proposes. However, in several groups (for example, molluscs), and chitons in particular, chromosome studies are scarce, with a few species investigated and analyses performed mostly with simple methods.

Only 2,5% of about 900 living species of chitons have been so far karyologically investigated, all of them in the same order (Chitonida). The authors note that the species of suborder Chitonina all have a karyotype of 2n=24 chromosomes, all biarmed, that is metacentric or submetacentric. The species studied by the authors, formerly included in Chitonida, also possesses 2n=24 elements, but many are uniarmed and, therefore, resembling to the chromosome complement of species of the suborder Acanthochitonina. This provides support to recent attribution of the studied sea cradle to the latter suborder.

Furthermore, the comparison among the karyotypes of the suborder Acanthochitonina allows the authors to propose that in this group of chromosome changes mainly occurred by fusion among uniarmed elements. This kind of change is that mainly involved in chromosome . The study was published in the open access journal Comparative Cytogenetics.

Explore further: Geneticists solve 40-year-old dilemma to explain why duplicate genes remain in the genome

More information: Petraccioli A, Maio N, Odierna G (2012) Chromosomes of Lepidochitona caprearum (Scacchi, 1836) (Polyplacophora, Acanthochitonina, Tonicellidae) provide insights into Acanthochitonina karyological evolution. Comparative Cytogenetics 6(4): 397. doi: 10.3897/CompCytogen.v6i4.3722

Odierma G, Aprea G, Barucca M. Biscotti M, Canapa A, Capriglione T, Olmo E (2008) Karyology of the Antarctic chiton Nuttallochiton mirandus (Thiele, 1906) (Mollusca: Polyplacophora) with some considerations on chromosome evolution in chitons. Chromosome Research 16: 899. doi: 10.1007/s10577-008-1247-1

add to favorites email to friend print save as pdf

Related Stories

Chromosome number changes in yeast

Jul 21, 2011

Researchers from Trinity College Dublin have uncovered the evolutionary mechanisms that have caused increases or decreases in the numbers of chromosomes in a group of yeast species during the last 100-150 million years. The ...

Sex chromosome evolution tracked in fruit fly

Jul 20, 2012

(Phys.org) -- Fruit flies are commonly used in genetics research because their lifespan is short, they are easy to breed in the laboratory, and mutants are widely available. There are about 1,500 known species. ...

Recommended for you

MaxBin: Automated sorting through metagenomes

Sep 29, 2014

Microbes – the single-celled organisms that dominate every ecosystem on Earth - have an amazing ability to feed on plant biomass and convert it into other chemical products. Tapping into this talent has ...

User comments : 0