Yeast protein breaks up amyloid fibrils and disease protein clumps differently

Nov 19, 2012
Credit: James Shorter, PhD, Perelman School of Medicine, Univeristy of Pennsylvania; Cell

(Phys.org)—Several fatal brain disorders, including Parkinson's disease, are connected by the misfolding of specific proteins into disordered clumps and stable, insoluble fibrils called amyloid. Amyloid fibrils are hard to break up due to their stable, ordered structure. For example, α-synuclein forms amyloid fibrils that accumulate in Lewy Bodies in Parkinson's disease. By contrast, protein clumps that accumulate in response to environmental stress, such as heat shock, possess a less stable, disordered architecture.

Hsp104, an enzyme from yeast, breaks up both amyloid and disordered clumps. In the most recent issue of Cell, James Shorter, PhD, assistant professor of Biochemistry and , and colleagues from the Perelman School of Medicine, University of Pennsylvania, show that Hsp104 switches mechanism to break up amyloid versus disordered clumps. For stable amyloid-type structures, Hsp104 needs all six of its subunits, which together make a hexamer, to pull the clumps apart. By contrast, for the more amorphous, non-amyloid clumps, Hsp104 required only one of its six subunits.

Unexpectedly, the bacterial version of the Hsp104 enzyme, called ClpB, behaves differently compared to Hsp104. Bacterial ClpB uses all six subunits to break up amorphous clumps and fails to break up amyloid fibrils. Bacteria just ignore these more stable structures, whereas yeast use Hsp104 to exploit amyloid fibrils for beneficial purposes.

"One surprise is that biochemists thought that Hsp104 and ClpB hexamers worked in the same way," says first author and graduate student in the Shorter lab Morgan DeSantis. "This is not the case."

Hsp104 breaks up the protein clumps by "pulling" individual through a channel that the hexamer forms at its center, recruiting more subunits to the job, as needed. Individual polypeptides emerge on the other side where they can be refolded into active structures. Remarkably, Hsp104 broke up various amyloid fibrils formed by proteins connected to Alzheimer's disease (tau and Ab42), (α-synuclein), Huntington's disease (polyglutamine), and even type II diabetes (amylin).

The bad news is that animals do not harbor their own version of Hsp104 and they do not appear to have the protein machinery to break up amyloid clumps as rapidly. But Shorter views this as a possible therapeutic opportunity: "We want to introduce Hsp104 transiently as a therapeutic clump buster and optimize Hsp104 for each type of disease protein." He is heartened by preclinical evidence that Hsp104 rescues neurodegeneration caused by α-synuclein misfolding in a rat model of Parkinson's . His lab is now scanning yeast cells to look for the most useful forms of Hsp104.

Explore further: Penicillin redux: Rearming proven warriors for the 21st century

More information: www.sciencedirect.com/science/article/pii/S0092867412012378

Related Stories

Lessons from yeast: A possible cure for Parkinson's disease?

Aug 14, 2008

Parkinson disease (PD) is a debilitating and lethal neurodegenerative disease, for which there is currently no cure. It is caused by the progressive loss of nerve cells that produce the chemical dopamine and is characterized ...

How Parkinson's disease starts and spreads

Apr 16, 2012

Injection of a small amount of clumped protein triggers a cascade of events leading to a Parkinson's-like disease in mice, according to an article published online this week in the Journal of Experimental Medicine.

Researchers link metal ions to neurodegenerative disease

Aug 06, 2007

A multi-institutional team of researchers led by Emory University has defined for the first time how metal ions bind to amyloid fibrils in the brain in a way that appears toxic to neurons. Amyloid fibrils are linked to the ...

Recommended for you

Researchers show fruit flies have latent bioluminescence

Apr 10, 2014

New research from Stephen C. Miller, PhD, associate professor of biochemistry and molecular pharmacology, shows that fruit flies are secretly harboring the biochemistry needed to glow in the dark—otherwise ...

User comments : 0

More news stories

Chemists achieve molecular first

(Phys.org) —Chemists from Trinity College Dublin have achieved a long-pursued molecular first by interlocking three molecules through a single point. Developing interlocked molecules is one of the greatest ...

Metals go from strength to strength

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.

Wireless industry makes anti-theft commitment

A trade group for wireless providers said Tuesday that the biggest mobile device manufacturers and carriers will soon put anti-theft tools on the gadgets to try to deter rampant smartphone theft.