X-ray 'prism' explores chemical changes at the molecular scale

Nov 06, 2012 by Glenn Roberts Jr.
An ultrabright X-ray pulse strikes a solution of manganese-containing molecules, which in turn emit X-ray fluorescence that provides chemical information about the molecules before they are destroyed. Credit: Greg Stewart/SLAC

(Phys.org)—Research at SLAC National Accelerator Laboratory demonstrates that ultrashort, ultrabright X-ray laser pulses can reveal details of chemically important molecules at room temperature and in their natural state. The technique could aid studies of photosynthesis and industrial catalysts, and opens the door to development of other analytic tools at SLAC's Linac Coherent Light Source.

In the experiments, researchers used a technique known as X-ray to learn about the of samples and chemical changes occurring over time.

While spectroscopy has long been used at synchrotron facilities, sensitive samples are typically frozen to protect them from , which in turn makes it very challenging to follow chemical reactions. The team has now shown that with the LCLS X-ray laser, these difficulties can be overcome.

A very simple example of a spectrometer is a prism that separates sunlight into a rainbow of colors. "The spectrometer used in the LCLS experiments works in a similar fashion, with an array of 16 specialized crystals that select the different 'colors' of emitted X-rays," said Roberto Alonso-Mori, a research associate at SLAC who was in charge of building the new spectrometer.

He was first author of a Nov. 5 paper in detailing the research.

The team, led by Uwe Bergmann, deputy director for the LCLS, and Junko Yano and Vittal Yachandra at Lawrence Berkeley National Laboratory, focused on complexes containing manganese, an important element in the water-splitting step of photosynthesis. Similar complexes are also integral to some .

Bergmann said the manganese compounds remained intact long enough to obtain detailed information about their before being destroyed in the X-ray pulses.

"Previous experiments at LCLS have shown that the intact overall atomic structure of biological samples can be probed at room temperature before they are destroyed," he said. "This study goes one step further, showing that even the local chemistry at the metal site can be probed."

Team member Jan Kern, a research scientist at LCLS and Berkeley Lab, said, "The success of the experiments opens the door for more studies of metal-containing proteins and catalysts, especially the water-splitting catalyst in photosynthesis, and also to other types of spectroscopic techniques at LCLS."

The technique can also be used in conjunction with X-ray diffraction, which reveals the overall structures of proteins and other molecules based on patterns produced when the X-ray light strikes the crystallized samples.

The research team has previously used diffraction at LCLS to study the structure of Photosystem II, and researchers have since conducted additional experiments using spectroscopy, with more experiments planned.

Bergmann said spectroscopy is the key to revealing chemical changes over time in sensitive samples studied at LCLS. "The atomic structure is important, but for a complete understanding of complex processes, like photosynthesis, the chemistry is what's really important," he said. "This paper is the first step."

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

More information: www.pnas.org/content/early/2012/10/31/1211384109

Related Stories

First atomic X-ray laser created

Jan 25, 2012

Scientists working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have created the shortest, purest X-ray laser pulses ever achieved, fulfilling a 45-year-old prediction and ...

FLASH Imaging Redux: Nano-Cinema is Born

Jul 08, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precur ...

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0