X-ray 'prism' explores chemical changes at the molecular scale

November 6, 2012 by Glenn Roberts Jr.
An ultrabright X-ray pulse strikes a solution of manganese-containing molecules, which in turn emit X-ray fluorescence that provides chemical information about the molecules before they are destroyed. Credit: Greg Stewart/SLAC

(Phys.org)—Research at SLAC National Accelerator Laboratory demonstrates that ultrashort, ultrabright X-ray laser pulses can reveal details of chemically important molecules at room temperature and in their natural state. The technique could aid studies of photosynthesis and industrial catalysts, and opens the door to development of other analytic tools at SLAC's Linac Coherent Light Source.

In the experiments, researchers used a technique known as X-ray to learn about the of samples and chemical changes occurring over time.

While spectroscopy has long been used at synchrotron facilities, sensitive samples are typically frozen to protect them from , which in turn makes it very challenging to follow chemical reactions. The team has now shown that with the LCLS X-ray laser, these difficulties can be overcome.

A very simple example of a spectrometer is a prism that separates sunlight into a rainbow of colors. "The spectrometer used in the LCLS experiments works in a similar fashion, with an array of 16 specialized crystals that select the different 'colors' of emitted X-rays," said Roberto Alonso-Mori, a research associate at SLAC who was in charge of building the new spectrometer.

He was first author of a Nov. 5 paper in detailing the research.

The team, led by Uwe Bergmann, deputy director for the LCLS, and Junko Yano and Vittal Yachandra at Lawrence Berkeley National Laboratory, focused on complexes containing manganese, an important element in the water-splitting step of photosynthesis. Similar complexes are also integral to some .

Bergmann said the manganese compounds remained intact long enough to obtain detailed information about their before being destroyed in the X-ray pulses.

"Previous experiments at LCLS have shown that the intact overall atomic structure of biological samples can be probed at room temperature before they are destroyed," he said. "This study goes one step further, showing that even the local chemistry at the metal site can be probed."

Team member Jan Kern, a research scientist at LCLS and Berkeley Lab, said, "The success of the experiments opens the door for more studies of metal-containing proteins and catalysts, especially the water-splitting catalyst in photosynthesis, and also to other types of spectroscopic techniques at LCLS."

The technique can also be used in conjunction with X-ray diffraction, which reveals the overall structures of proteins and other molecules based on patterns produced when the X-ray light strikes the crystallized samples.

The research team has previously used diffraction at LCLS to study the structure of Photosystem II, and researchers have since conducted additional experiments using spectroscopy, with more experiments planned.

Bergmann said spectroscopy is the key to revealing chemical changes over time in sensitive samples studied at LCLS. "The atomic structure is important, but for a complete understanding of complex processes, like photosynthesis, the chemistry is what's really important," he said. "This paper is the first step."

Explore further: FLASH Imaging Redux: Nano-Cinema is Born

More information: www.pnas.org/content/early/2012/10/31/1211384109

Related Stories

FLASH Imaging Redux: Nano-Cinema is Born

July 8, 2008

Flash imaging of nanoscale objects undergoing ultrafast changes is now a technical possibility, according to a recent paper published in the June 22 edition of Nature Photonics. The results are a direct precursor to research ...

First atomic X-ray laser created

January 25, 2012

Scientists working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have created the shortest, purest X-ray laser pulses ever achieved, fulfilling a 45-year-old prediction and opening the door ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.