Jumping to reduce vibrations

Nov 16, 2012
A pioneering use of mini-trampolines is allowing engineers to better understand effects of vibrations caused by human movement on floors and small bridges. Credit: iStock

A pioneering use of mini-trampolines is allowing engineers to better understand effects of vibrations caused by human movement on floors and small bridges. 

Both footbridges and floors will vibrate perceptibly when people walk across them; how this vibration affects the structure can now be measured by a novel test developed by researchers from Monash University and Victoria University. 

Monash University's Dr Len Koss of the Department of Mechanical and and Associate Professor Vincent Rouillard of Victoria University are using a person jumping on a mini-trampoline to obtain quality structural data for footbridges and floors.

Dr Koss said a mini- trampoline was a convenient way to achieve high-force amplitude at without the use of motors, hydraulic systems or large revolving masses.

"The combination of the jumper and the mini-trampoline provides a high force at a low frequency of vibration: this data is often difficult to obtain using existing mechanical or electrical vibration shakers which are much more massive," Dr Koss said.

"The portable nature of a mini-trampoline allows for easier testing and provides measurements of force and response to be measured consecutively using only one the devise that measures vibrations."

The use of the jumper/mini-trampoline combination allowed researchers to collect structural data on stiffness, natural frequency and the effective mass of the floor or bridge under test.

"The data collected during testing determined if the motion of the structure would be affected by human movement and whether movement of people on the structure would generate excess vibrations," Dr Koss said.

The researchers are now developing equations that would allow a simple measurement obtained by using the mini-trampoline method to be used to estimate structural stiffness. This would mean a major breakthrough in structural testing of floors and footbridges.

Explore further: Lawsuits challenge US drone, model aircraft rules

add to favorites email to friend print save as pdf

Related Stories

Detecting defects with wind and water

Apr 04, 2010

(PhysOrg.com) -- Bridges, aircraft and wind turbines are in constant movement. Natural forces and pedestrians all create vibrations. Previously, time-consuming tests were needed to determine how building components ...

Good vibrations

Mar 23, 2010

(PhysOrg.com) -- Energy harvesting - using vibrations from the environment to produce electricity - has been around for over a decade, but Dr Stephen Burrow and his team in the Department of Aerospace Engineering at the University ...

Picking up bad vibes to gauge bridge health

May 02, 2007

By monitoring changes in vibrations of bridges it is possible to identify hidden cracks and fractures, according to a Queensland University of Technology researcher.

Recommended for you

Lawsuits challenge US drone, model aircraft rules

4 hours ago

Model aircraft hobbyists, research universities and commercial drone interests filed lawsuits Friday challenging a government directive that they say imposes tough new limits on the use of model aircraft ...

For secure software: X-rays instead of passport control

Aug 21, 2014

Trust is good, control is better. This also applies to the security of computer programs. Instead of trusting "identification documents" in the form of certificates, JOANA, the new software analysis tool, examines the source ...

Razor-sharp TV pictures

Aug 21, 2014

The future of movie, sports and concert broadcasting lies in 4K definition, which will bring cinema quality TV viewing into people's homes. 4K Ultra HD has four times as many pixels as today's Full HD. And ...

User comments : 0