Researchers discover why typhoid fever pathogen targets only humans

November 15, 2012
Credit: Shutterstock

(Phys.org)—Salmonella typhi is a particularly nasty bacterium that targets only humans and causes typhoid fever, which kills hundreds of thousands of people annually. In a new study appearing in the Nov. 16 issue of the journal Science, Yale scientists explain how evolution shaped the pathogen to be so selective.

Jorge E. Galan, the Lucille P. Markey Professor of , and colleague Stefania Spano coaxed to survive within of mice—a species that in nature cannot be infected with the pathogen. They managed the trick by introducing a single gene from a related strain of Salmonella that can infect multiple species. The gene enable S. typhi to destroy a molecular courier known as Rab32, which under normal conditions helps arm anti-microbial defenses against the invader.

In humans, however, the antimicrobial defenses delivered by Rab32 are not effective against S. typhi, and this pathogen can establish itself and cause disease.

"The immune system is still firing the bullets, but this pathogen has learned how to dodge them in humans but apparently not in other animals," Galan said.

Unlike the that cause food poisoning, S. typhi can be fatal in up to 20 percent of untreated cases. People contract typhoid fever through contaminated food or water, and survivors can sometimes carry the pathogen for years. The loss of a single gene in S. typhi gives clues as to why it has lost the ability to replicate in any host other than humans, Galan said.

Deficiencies in the Rab32 surveillance mechanism may also make people more susceptible to leprosy and tuberculosis.

Understanding how the works may lead to new strategies to combat a those infectious diseases and help develop new classes of antibiotics to combat pathogens, which are developing resistance to current drugs.


Video: When bacteria that causes enters immune system of a mouse, a molecular courier called Rab32 helps deliver antimicrobials which destroy the invader. In humans, however, this molecular messenger fails to deliver defense against the pathogen.

Explore further: Researchers uncover secrets of salmonella's stealth attack

Related Stories

Researchers uncover secrets of salmonella's stealth attack

April 16, 2009

A single crafty protein allows the deadly bacterium Salmonella enterica to both invade cells lining the intestine and hijack cellular functions to avoid destruction, Yale researchers report in the April 17 issue of the journal ...

Internal cellular sensors make Salmonella dangerous: study

June 15, 2012

(Phys.org) -- Salmonella becomes dangerously virulent only when molecular sensors within the organism sense changes in the environment, a team of researchers from the Yale School of Medicine and the Yale Microbial Diversity ...

Recommended for you

Head and body lice read DNA differently

July 28, 2015

What makes head lice different from body lice had scientists scratching their heads as previous genetic studies failed to find any substantial differences between the two types of lice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.