Tracking down smallest biomarkers

November 27, 2012
Small-angle X-ray scattering of a micro-vesicle sample (multilamellar liposomes) using the vacuum-compatible Pilatus detector, image recorded at a photon energy of 3 keV. The scattering pattern allows the dimensions of the nano-objects in the examined sample to be determined. Credit: PTB

Microvesicles are smallest cell elements which are present in all body fluids and are different, depending on whether a person is healthy or sick. This could contribute to detecting numerous diseases, such as, e.g., carcinomas, at an early stage, and to treating them more efficiently. The problem is that the diameter of the relevant microvesicles generally lies below 100 nm, which makes them technically detectable, but their exact size and concentration hardly possible to determine.

A new device is now to provide the metrological basis for these promising . The vacuum-compatible version of the Pilatus hybrid for X-rays, which was developed by Dectris in cooperation with the Physikalisch-Technische Bundesanstalt (PTB), now allows also the size of nano-particles – which, to date, have been difficult to characterize – to be determined using small-angle X-ray scattering at low photon energies. The detector can also be used for other X-ray-based techniques.

What makes this detector unique is the size of its total surface (17 cm × 18 cm) as well as the fact that it can be operated in vacuum. Operating the detector in vacuum drastically increases the sensitivity of the measuring facility, since the soft X-rays, which are scattered on the sample, are not absorbed by on their way towards the detector. This device now allows, for example, experiments for size determination of to be carried out with small-angle X-ray scattering (SAXS) also at the absorption edges of the calcium, sulphur, phosphor or silicon at photon energies below 5 keV with high dynamics and good spatial resolution.

For a few months, the new Pilatus X-ray detector has been used for some of PTB's own research projects. At the BESSY II in Berlin-Adlershof, where PTB has been operating its own laboratory for 15 years, scientists are now using the new detector, for example, to establish the – urgently needed – metrological basis for the size determination of microvesicles. A project carried out within the scope of the European Metrology Research Programme (EMRP) and with the significant participation of the Amsterdam Medical Center in the Netherlands is to contribute decisively to fully exploiting the potential of microvesicles for the early diagnosis of diseases.

Explore further: Nano Measurement in the 3rd Dimension

Related Stories

Nano Measurement in the 3rd Dimension

July 6, 2009

From the motion sensor to the computer chip - in many products of daily life components are used whose functioning is based on smallest structures of the size of thousandths - or even millionths - of millimetres. These micro ...

X-ray telescope to detect dark energy in space

March 16, 2010

It will be on board in 2012, when a Soyus-2 rocket carries an X-ray telescope into space to decode the nature of the universe's dark energy: an X-ray detector developed by the Max Planck Institute for Extraterrestrial Physics. ...

Quick-Change Molecules Caught in the Act

June 1, 2010

( -- The chemistry of life happens so fast that a millionth of a second is an eternity -- an eternity that is largely invisible to science. In that time, molecules change in ways we cannot see. Now, though, there ...

Gigantic mirror for X-radiation in outer space

September 27, 2010

It is to become the largest X-ray telescope ever: The International X-Ray Observatory (IXO), which has been planned in a cooperation between NASA, ESA and Japan's Aerospace Exploration Agency JAXA, will be launched into space ...

X-ray vision to characterise mineral ores

October 5, 2011

A new state of the art x-ray imaging detector smaller than a postage stamp is the key to a powerful new method of characterising mineral ores, according to an article published today in the October issue of CSIRO’s Process ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.