Thermogenerator from the printer

Nov 15, 2012
A targeted combination of thermoelectrical and metallic materials enables structures to be printed and used as thermoelectrical generators. Credit: Fraunhofer IFAM

Wireless sensor networks monitor machinery and equipment in factories, cars and power stations. They increasingly "harvest" the energy they need to transmit measurement data from the environment, thus making them self-sufficient. At the Electronica 2012 trade fair, Fraunhofer researchers will present a printed thermogenerator, which in the future will be able to generate energy supply for sensors through temperature differences.

The computer activates an alarm: the machine's motor is threatening to overheat. The thermosensor attached directly to the motor housing reports the threat. The information is transmitted to the maintenance service which ensures that the cause is identified. Sensors can be used in factories, and other areas in everyday life. They measure temperature, humidity and wear and tear. Data is transmitted to the computer via and read out. This enables the provision of information on the condition of parts – for instance, whether maintenance or repairs are required. More and more frequently wireless sensors are used which consume very low levels of energy and the power required by the sensor, the and wireless module derives its power directly from the environment instead of "harvesting" energy from batteries can be generated, for instance, from heat or movement. Researchers from the Fraunhofer Institute for and IFAM in Bremen will be presenting a printed thermogenerator, which can be tailored exactly to technical interfaces, at the Electronica trade fair in Munich (13 – 16 November) Hall A5, Booth 121.

Monitoring with energy-autonomous sensors

" facilitate the monitoring of safety-related components", explains Dr. Volker Zöllmer, Head of Functional Structures, whose work focuses on the topic of Energy Harvesting at the Fraunhofer IFAM. For sensors to work at optimum capacity, they must be attached directly to the component's interface or even integrated into the component. The power supply is usually obtained via cable or battery. "However, the limited storage capacity and battery life, as well as the issue of recycling, are critical subjects for the user", appreciates Zöllmer. "In our experience, a replaceable battery contributes significantly to the design of an application and as such restricts the flexible layout".

To ensure that the sensor network is entirely suitable for energy supply by means of energy harvesting, it must only consume low levels of energy. If sensors in intelligent networks are only active when sending and receiving data, energy is only required in milliwatts. Thermogenerators can deliver these quantities, for example, converting ambient heat into power. The IFAM researchers use new production processes to custom manufacture such generators.

Printing thermogenerators

"Generative manufacturing processes produce both sensors and sensor networks as well as the required elements for energy harvesting such as thermogenerators: By directly depositing functional structures, which have an ink or paste base, using ink-jet, aerosol-jet, screen-printing or dispensing processes, not only can electrical circuit boards and sensor elements be attached to different interfaces but it is also possible to produce structures which harvest energy", explains Zöllmer. Using a purposeful combination of metallic and thermoelectrical materials which are successively applied, the researchers manufacture structures which can be used as thermoelectrical generators. The major advantage of this is that the printed thermogenerators can be tailored exactly to the technical surfaces. This makes the sensors less susceptible to faults because the can be adapted directly to the respective requirements.

Explore further: PsiKick's batteryless sensors poised for coming 'Internet of things'

add to favorites email to friend print save as pdf

Related Stories

The fluid transducer: Electricity from gas and water

Oct 27, 2008

Air compression systems can be found in many manufacturing operations. If a leak occurs anywhere in the system, the air pressure drops and production comes to a halt until the source of failure has been found. ...

Analyzing energy potential

May 04, 2012

Sensors, radio transmitters and GPS modules all feature low power consumption. All it takes is a few milliwatts to run them. Energy from the environment - from sources such as light or vibrations - may be enough to meet these ...

Miniaturized power modules for aircraft bodies

Jun 14, 2011

Aircraft maintenance can be time consuming and expensive. It is much simpler if the airplane itself reports, where maintenance is required. The best solution is an approach for the sensor network, which even ...

Install and Forget: Batteryless Radio Sensors

Mar 03, 2010

Siemens has developed a variety of energy autarkic radio sensors that draw the energy they require for operation from their surroundings. The technology can be used to automatically monitor facilities in remote ...

Recommended for you

Lifting the brakes on fuel efficiency

17 hours ago

The work of a research leader at Michigan Technological University is attracting attention from Michigan's Governor as well as automotive companies around the world. Xiaodi "Scott" Huang of Michigan Tech's ...

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

LinkedIn membership hits 300 million

The career-focused social network LinkedIn announced Friday it has 300 million members, with more than half the total outside the United States.

Researchers uncover likely creator of Bitcoin

The primary author of the celebrated Bitcoin paper, and therefore probable creator of Bitcoin, is most likely Nick Szabo, a blogger and former George Washington University law professor, according to students ...

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...