Novel technique to produce stem cells from peripheral blood

Nov 01, 2012
Novel technique to produce stem cells from peripheral blood

Stem cells are a valuable resource for medical and biological research, but are difficult to study due to ethical and societal barriers. However, genetically manipulated cells from adults may provide a path to study stem cells that avoid any ethical concerns. A new video-protocol in JoVE (Journal of Visualized Experiments), details steps to generate human induced pluripotent stem cells (iPSC) from cells in the peripheral blood. The technique has been developed by Boston University's Dr. Gustavo Mostoslavsky and his colleagues.

Stem cells are unique because they can self-renew, differentiate into multiple cell types (pluripotency), and are immortal. Fertilized eggs produce embryonic stem cells with the potential to differentiate into any other cell type. Despite their value, embryonic stem cells pose a variety of ethical, legal and political implications that cause scientists to look for less controversial paths of study. "As opposed to human that originate in fertilized eggs, human induced pluripotent stem cells can be generated from any cell, and there are no ethical barriers to this," Dr. Mostoslavsky explains.

"Our article describes a methodology to obtain high quality, induced pluripotent stem cell lines," Dr. Mostoslavsky continues. His work is particularly interesting to the stem cell research community because "blood is an easily accessible sample for most laboratories. Our procedure uses a vector we created and produced a few years ago, and is very efficient. Our colleagues are very interested in that high efficiency. We published in JoVE because there are some technical details in the protocol that are best conveyed with a video-protocol. "

Dr. Mostoslavsky uses induced to model genetic , providing a fast track to study in the laboratory. This technique will prove a valuable time and cost saving resource for other scientists interested in genetic disorders. The video-protocol was published in JoVE on October 31, 2012. JoVE Senior Science Editor Dr. Nandita Singh tells us, "We are excited to describe the generating of human iPSC using a lentiviral vector the Yamanaka factors. This vector was developed in Dr. Mostoslavsky's lab. The ease of obtaining the tissue sample combined with the of reprogramming makes this method a very valuable tool in the field. The JoVE format will help the scientific community to accurately replicate this methodology.

Explore further: Environmental pollutants make worms susceptible to cold

More information: Mostoslavsky et. al. www.jove.com/video/4327/genera… rom-peripheral-blood

add to favorites email to friend print save as pdf

Related Stories

New 3-D stem cell culture method published

Mar 02, 2012

Stem cells are the body's mechanics, repairing damaged tissues and organs. Because these cells are able to grow into any type of cell in the body, scientists believe they hold the key to groundbreaking new ...

Rethinking reprogramming: A new way to make stem cells

Apr 07, 2011

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could ...

Recommended for you

Environmental pollutants make worms susceptible to cold

1 hour ago

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

Interactions of Earth's smallest players have global impact

3 hours ago

A new study reveals the interactions among bacteria and viruses that prey on them thriving in oxygen minimum zones—stretches of ocean starved for oxygen that occur around the globe. Understanding such microbial ...

A new quality control pathway in the cell

21 hours ago

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0