What's behind the success of the soccer 'Knuckleball'

November 16, 2012

What makes soccer star Christiano Ronaldo's "knuckleball" shot so unpredictable and difficult to stop? At the American Physical Society's (APS) Division of Fluid Dynamics (DFD) meeting, November 18 – 20, 2012, in San Diego, Calif., a team of researchers investigating this phenomenon will reveal their findings.

A "knuckleball" in soccer refers to a ball kicked at very low spin, which results in a zigzag trajectory. Along its straight path, the ball deviates laterally by roughly the diameter of a ball (0.2 m). The deviation direction appears to be unpredictable, which is extremely frustrating for goalkeepers attempting to block it.

Variations of the knuckleball are also used in baseball and volleyball, so many players and coaches want to understand the physics at play during its zigzag trajectory.

"We decided to study the knuckleball because the physics of sports is such a new field and there are many discoveries to be made," explains Caroline Cohen, a Ph.D. student at École Polytechnique's Laboratory (LadHyX) in France.

After trying other experiments, Cohen and colleague Baptiste Darbois Texier, also a Ph.D. student, working with Christophe Clanet, a research director at France's Centre National de la Recherche Scientifique (CNRS), focused on an approach that involves dropping steel beads into a tank of water and studying their . They discovered that the knuckleball phenomenon occurs, but at much shorter distances. This makes it easier to observe with an ultrafast camera, which lets you see things you can't with the "naked" eye.

"The big surprise is that every bead makes a zigzag – from a little plastic bead to a steel weight of 7 kg (15.4 lbs)," says Cohen. "We wouldn't have bet on this occurring before we tried it, so it was quite exciting to actually see it by doing a simple experiment."

The team demonstrated that – contrary to popular belief – the "knuckle effect" isn't a result of at the site of foot impact or ball seams. What's really going on is that the aerodynamic lift forces that act on a smooth sphere can fluctuate and cause the zigzagging.

At the DFD meeting, Darbois Texier will also describe the significant role the knuckle effect may have played in historic experiments trying to prove the Earth's rotation. "One way to attempt this is to measure the East deviation of a sphere in free fall – from a height of 150 m (492 ft) the deviation is about 3 cm (1.18 in)," he notes. "We found that the results of these experiments were very scattered, and we believe this is because of the lateral deviation caused by the knuckle effect."

Explore further: A convincing calculation: ten soccer players ensure excitement

More information: The talk, "How Cristiano Ronaldo performs his knuckleball?," is at 8 a.m. on Monday, Nov. 19, in Room 30E. http://absimage.aps.org/image/DFD12/MWS_DFD12-2012-000981.pdf

Related Stories

Carlos '97 free kick no fluke, say French physicists

September 2, 2010

Roberto Carlos' free kick goal against France in 1997's Tournoi de France is thought by many to have been the most skilful free kick goal - from 35m with a powerful curling banana trajectory - ever scored; but by others to ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.