A simpler path to a catalyst

Nov 06, 2012 by Fabio Bergamin
A simpler path to a catalyst
The powdery zeolite and its chemical structure. Illustration: Josef Kuster / ETH Zürich / iStockphoto

Researchers at ETH Zurich developed a new synthesis procedure for a catalyst. This procedure may be used for the large-scale production of, for instance, plastics from renewable resources in an environmentally friendly and efficient manner.

It started with an idea of Ive Hermans, Assistant Professor at the Institute of Chemical and Bioengineering: The and his co-workers were looking for a new synthesis procedure for an important catalyst for the chemical industry. To date, the synthesis of the catalyst occurs in a very complex and error-prone procedure. The ETH researchers discovered a far more convenient two-step procedure, which is more suitable for large-scale production.

The catalyst in question is a , a powdery, porous, particulate material. Like all catalysts also this substance can accelerate a certain reaction and/or steer it towards a desired product. Hermans and his co-workers wanted to develop a catalyst that facilitates oxidation reactions and can thus be used for the preparation of so-called lactones from ketones.

"The new method is surprisingly easy"

The use of a catalyst for such reactions has many advantages. "The preparation of lactones, for instance, is time-intensive and expensive, as acids are formed as side-products", says Hermans. By using a tin containing zeolite as a catalyst instead, it becomes possible to use as an oxidation so that water is the only side-product. This method has not been implemented industrially so far, due to the time-consuming synthesis procedure of the special zeolites: the process requires 40 days. In addition, the procedure is difficult to control and can easily fail.

The idea of the ETH researchers: Instead of synthesizing the zeolite in a procedure which takes a great deal of time, out of , aluminum and tin, they used a commercially available zeolite made of silicon and aluminum. Within two steps this material was modified to the desired catalyst. "At first, we removed the atoms from the raw material in a known procedure without changing the crystalline structure of the zeolite", says PhD student Sabrina Conrad. "Then we replaced the vacant sites inside the zeolite framework with tin atoms by mixing the pretreated zeolite with a tin compound for 15 minutes." Experiments have shown that the newly prepared zeolite contains more tin than conventionally prepared catalysts. Due to that, the catalyst is significantly more efficient.

Environmentally friendly preparation procedure

In cooperation with an industrial partner, the ETH researchers want to optimize the preparation procedure for large-scale applications. In the future, the catalyst could be used for the industrial synthesis of starting materials required for important plastics. One example would be the preparation of polylactic acid from renewable resources. Polylactic acid is being used in plastic packing materials or foil. "The demand for plastics made from will strongly increase as soon as crude oil – the basis of many – will become more rare and expensive", explains Hermans. "With our , it is possible to produce such products on a large scale in a much more environmentally friendly way. "

Explore further: A greener source of polyester—cork trees

More information: Hammond C, Conrad S, Hermans I: Simple and Scalable Preparation of Highly Active Lewis Acidic Sn-beta. Angewandte Chemie International Edition, 2012, 51: 1-5. DOI: 10.1002/anie.201206193

Related Stories

Engineers study the inner world of complex catalysts

Sep 25, 2012

(Phys.org)—Using state-of-the-art visualization techniques, chemical engineers at ETH Zurich explore the complex inner life of porous catalysts. Their work will aid in the development of rational catalyst ...

Blueprint from the interior of a catalyst

Sep 22, 2009

Irregularities in industrial catalysts can inhibit the conversion of crude oil, Utrecht University chemists have concluded. They were the first to provide a detailed blueprint of the interior of a commercially used catalyst ...

Zeolite synthesis made easy

Dec 12, 2011

Zeolites are porous materials with perfectly regular pores and high surface area that can act as molecular sieves. This property has led to important applications including the purification of air or water such as the contaminated ...

Recommended for you

A greener source of polyester—cork trees

7 hours ago

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

A beautiful, peculiar molecule

10 hours ago

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

User comments : 0

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.