Sieve holds nanoparticles and acts as solar absorber

Nov 27, 2012
A microscope image of the membrane after the filtering. The gold particles are well dispersed. Credit: John Wiley and Sons

(Phys.org)—A membrane consisting of polymer fibres and proteins makes a novel filter for tiny, nano-scaled particles in aqueous solutions. The result of such a research, which was done by Professor Mady Elbahri and his team from the Institute of Material Science at Kiel University (KU) and the Institute of Polymer Research at Helmholtz-Zentrum Geesthacht (HZG), has recently been published as the cover article in the current issue of Advanced Functional Materials.

A Nanofluid, which means a of e.g. in water, passes easily through commonly used macroporous polymeric mem-branes. The particles are too small to be held using hole diameters between three and four micrometers. In addition, the particles would block smaller sieve openings rapidly. Hence, pressure would be necessary to filter out the fluid.

The graphic shows a membrane consisting of polymer fibres (red and black) with proteins (blue) that have activated their ability to capture all the metal nanoparticles. When the Nanofluid with metal particles (top) passes through the sieve, the proteins hold the particles. At the end, there is a liquid which is free of particles. Credit: John Wiley and Sons

In order to solve these problems, Elbahri and his team biofunctionalized their membrane and added a commercially available protein to the fibres. "We found out that the protein undergoes a conformational change under water, and its ability to capture all the metal nanoparticles during the filtration process is acti-vated", explains Elbahri. "This is a breakthrough", adds Co-author Dr. Shahin Homaeigohar. "The same principle will hopefully enable us, to filter bio-molecules and organisms out of waste water."

From Filtration to solar thermal energy

When the nano sieve captures such as gold, another application is at hand, because, no other method has succeeded in dispersing the particles that well. "This result was unexpected", says Elbahri. "Under dry conditions, the membrane shows the color of the metal, in this case the red of the ". When the membrane gets wet, it becomes black. "Then, it acts as an omnidirectional perfect black absorber, which can be used as a solar absorber." Elbahri adds: "Indeed we bridge the gaps between several disci-plines, chemistry, physics, bioscience and materials science that is, and the Nanochemistry and Nanoengineering group has now initiated the first step toward intradisciplinarity of Nanoscience."

The Nanofluid with particles of gold (left) and the solution filtered (right). All metal paticles are filtered out. Credit: CAU, Photo: Claudia Eulitz

Application as a virus and bio-filter

The nano sieve will allow filtering very small or biomolecules and or-ganisms such as viruses out of water. The scientists involved have already pat-ented their innovation, a bio-nano-composite, in Europe. Another patent for the USA is on its way. Besides its application in water filtration, the nano sieve shows great potentials as solar absorber and as a catalyser. "All in all, the result is a breakthrough towards the design of an operative filtration process, as a new route for the fabrication of functional materials, and offers commercially attrac-tive efficiencies at a low cost", says Elbahri.

Explore further: Carbon nanoballs can greatly contribute to sustainable energy supply

More information: Elbahri, M. et al., Smart Metal-Polymer Bionanocomposites as Omnidirectional Plasmonic Black Absorber by Nanofluid Filtration, Advanced Functional Materials, 22, 4771, 2012. DOI: 10.1002/adfm.201200768

add to favorites email to friend print save as pdf

Related Stories

Thinnest nanofiltration membrane to date

Jul 07, 2011

A recent collaboration between researchers at the University of Chicago and the University of Illinois at Chicago with the Center for Nanoscale Material's Electronic & Magnetic Materials & Devices Group at ...

Nanopores make sterile filtration more reliable

Jul 01, 2010

Irregular pores, low flow rates: The plastic membrane filters used in sterile filtration do not always ensure that conditions are really sterile. Filter membranes of aluminum oxide are more reliable - the ...

Self-healing dynamic membrane

Jun 28, 2012

The market for membranes, porous materials used mainly to filter liquids, is booming. However, their design leaves room for improvement. Taking their inspiration from cellular membranes, French researchers ...

Recommended for you

Demystifying nanocrystal solar cells

19 hours ago

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.