A secret of tumor stem cell survival: Scientists make progress against a devastating cancer

November 7, 2012
Undifferentiated malignant glioma cells in a cross-section of human brain tissue from the temporal lobe.  Credit: Frederick C. Skvara, MD/Visuals Unlimited/Corbis

Malignant glioma is generally a death sentence for patients. These tumors, which arise from non-neuronal cells within the brain, grow quickly and aggressively, and contain a core population of glioma stem cells (GSCs) that are largely invulnerable to the weapons typically brought to bear against other cancers. "GSCs display resistance to radiation due to increased activation of DNA damage repair pathways, and also possess intrinsic resistance mechanisms against chemotherapy-induced cell death," explains Prabha Sampath of the A*STAR Institute of Medical Biology.

New work from Sampath and her co-workers has revealed a potential vulnerability in GSCs that might give glioma patients a fighting chance. Her team studies microRNAs, tiny that do not encode protein; instead, they govern the production of proteins encoded by other genes. This research has a direct bearing on glioma progression. "MicroRNA-mediated translational control is known to be a major factor in brain tumor pathology," explains Sampath.

She and her colleagues obtained GSCs from five patients with malignant glioma, and examined how their expression levels of known microRNAs differed relative to normal (NSCs). This revealed that GSCs produce markedly higher levels of the microRNA miR-138; importantly, miR-138 levels dropped when the researchers chemically forced the GSCs to 'mature' into differentiated , supporting a role for this RNA in uncontrolled tumor growth.

Treatment with 'antimiR-138', a molecule that selectively blocks the function of miR-138, killed cultured GSCs but had no effect on normal NSCs. Closer examination revealed that the inactivation of this microRNA prevented GSCs from undergoing cell division, and instead caused these cells to undergo a cellular 'self-destruct' program.

Subsequent transplantation experiments indicated that this approach might also yield therapeutic fruit: mice that received implants of human GSCs promptly developed aggressive gliomas, but inactivation of miR-138 was sufficient to prevent tumorigenesis. Finally, the researchers demonstrated that elevated miR-138 expression may be predictive of disease recurrence in patients with glioblastoma multiforme (GBM), a typical .

Having established this previously unrecognized role for miR-138 in ensuring GSC survival, Sampath is interested in examining whether this microRNA also contributes to progression and post-therapeutic recurrence of other brain cancers. Even if its influence is limited to a handful of cancers, the clinical impact of these findings could prove very significant. "We are currently performing tumor regression experiments and developing specific vectors for delivery of antimiR-138, with a vision to exploit this further as a novel therapy for treating malignant gliomas," she says.

Explore further: 'Gateway' gene discovered for brain cancer

More information: Chan, X. H. D., Nama, S., Gopal, F., Rizk, P., Ramasamy, S. et al. Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Reports2, 591–602 (2012). dx.doi.org/10.1016/j.celrep.2012.07.012

Related Stories

'Gateway' gene discovered for brain cancer

February 14, 2007

Researchers have discovered that the same genetic regulator that triggers growth of stem cells during brain development also plays a central role in the development of the lethal brain cancer malignant glioma. In experiments ...

Common cancer gene sends death order to tiny killer

May 31, 2007

Scientists at Johns Hopkins have discovered one way the p53 gene does what it's known for—stopping the colon cancer cells. Their report will be published in the June 8 issue of Molecular Cell.

Recommended for you

A long look back at fishes' extendable jaws

October 8, 2015

When it comes to catching elusive prey, many fishes rely on a special trick: protruding jaws that quickly extend their reach to snap up that next meal. Now, researchers reporting in the Cell Press journal Current Biology ...

New protein cleanup factors found to control bacterial growth

October 8, 2015

Biochemists have long known that crucial cell processes depend on a highly regulated cleanup system known as proteolysis, where specialized proteins called proteases degrade damaged or no-longer-needed proteins. These proteases ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.