Scotch tape finds new use as grasping 'smart material'

Nov 20, 2012 by Emil Venere
The researchers used Scotch tape to create a tiny grasping claw that collects droplets of water, an innovation could be used to collect water samples for environmental testing. The material, seen here, becomes flexible when exposed to humidity and returns to its original shape when dry. Credit: Manuel Ochoa, Purdue University

(Phys.org)—Scotch tape, a versatile household staple and a mainstay of holiday gift-wrapping, may have a new scientific application as a shape-changing "smart material."

Researchers used a laser to form slender half-centimeter-long fingers out of the tape. When exposed to water, the four wispy fingers morph into a tiny robotic claw that captures .

The innovation could be used to collect for environmental testing, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

The - made from a cellulose-acetate sheet and an adhesive - is uniquely suited for the purpose.

The graspers were coated with magnetic particles, which could allow researchers to retrieve the devices in the field by using a magnet. Credit: Manuel Ochoa, Purdue University

"It can be micromachined into different shapes and works as an inexpensive smart material that interacts with its environment to perform specific functions," he said.

Doctoral student Manuel Ochoa came up with the idea. While using tape to collect pollen, he noticed that it curled when exposed to humidity. The cellulose-acetate absorbs water, but the adhesive film repels water.

An animated image of the gripper closing. Credit: Manuel Ochoa, Purdue University

"So, when one side absorbs water it expands, the other side stays the same, causing it to curl," Ziaie said.

A laser was used to machine the tape to a tenth of its original thickness, enhancing this curling action. The researchers coated the graspers with so that they could be collected with a magnet.

"Say you were sampling for certain bacteria in water," Ziaie said. "You could drop a bunch of these and then come the next day and collect them."

Findings will be detailed in a presentation during a meeting of the Materials Research Society in Boston from Sunday (Nov. 25) to Nov. 30. Experiments at Purdue's Birck Nanotechnology Center were conducted by Ochoa, doctoral student Girish Chitnis and Ziaie.

The close underwater within minutes and can sample one-tenth of a milliliter of liquid.

Explore further: Spinach could lead to alternative energy more powerful than Popeye

More information: Laser-Micromachined Magnetically-Functionalized Hygroscopic Bilayer: A Low-Cost Smart Material,

Abstract
In this paper, we describe the design, fabrication, and characterization of magnetically functionalized humidity-responsive bilayers. We investigated two different ferrofluid embedded material structures: 1) cellulose-acetate sheet bonded to an acetate-backed adhesive (3M Scotch® GiftWrap Tape) (CA/GWT) and 2) a commercially available acetate-backed adhesive (3M Scotch® MagicTape) (MT). Cantilevers and other mechanical structures such as grippers were fabricated using laser micro-machining and exposed to humidity and magnetic fields. Such bilayers take advantage of the hygroscopic properties of cellulose acetate for their humidity response while simultaneously allowing one to remotely manipulate the structure using a magnetic field. The maximum radius of curvature in a humidity saturated environment for a CA/GWT cantilever (2 mm × 19 mm × 157 µm) was measured to be 7 mm, whereas the MT showed a smaller radius of curvature (< 3 mm). It was found that the humidity response of the MT cantilevers to be a function of the angle between the longitudinal axis of the cantilever and polymer orientation. For cantilevers cut at an angle 80 degree with respect to dominant polymer orientation a tip rotations of up to 25 degrees was measured. The magnetically-functionalized MT cantilevers were used as building blocks to create four-finger grippers that close underwater within minutes, can sample 100 µL of liquid, and can be remotely collected with a small permanent magnet.

Related Stories

'Ferropaper' is new technology for small motors, robots

Jan 05, 2010

(PhysOrg.com) -- Researchers at Purdue University have created a magnetic "ferropaper" that might be used to make low-cost "micromotors" for surgical instruments, tiny tweezers to study cells and miniature ...

New pump created for microneedle drug-delivery patch

Sep 01, 2010

(PhysOrg.com) -- Purdue University researchers have developed a new type of pump for drug-delivery patches that might use arrays of "microneedles" to deliver a wider range of medications than now possible ...

Recommended for you

A new approach to creating organic zeolites

9 hours ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

defactoseven
1 / 5 (1) Nov 21, 2012
But just think what you can do with duct tape! Infinitely superior.
antialias_physorg
not rated yet Nov 21, 2012
They must have one fun R&D department going on over at 3M.
Every year they find some (PR worthy) new use for their product.

Scotch tape as X-ray-machine
http://www.techne...917.html

Their competitrors (TESA) aren't far behind
Adhesive tape as data storage:
http://www.pcworl...cle.html

Adhesive tape as microdot holographic copy protection
http://www.tesa-s...9,1.html