Scientists identify two transposons that are active in human cells

Nov 29, 2012 by Iqbal Pittalwala

(Phys.org)—Transposable elements—or transposons—are DNA sequences that move in the genome from one location to another. Discovered in the 1940s, for years they were thought to be unimportant and were called "junk DNA." But now scientists recognize that these bits of DNA play vital roles in gene and genome evolution, and are important genetic tools for genome engineering.

A group of scientists recently identified two transposable elements—TcBuster and Space Invader—that are highly active in , offering powerful for mammalian genome engineering.

TcBuster, found in a beetle (), was discovered at the University of California, Riverside—specifically, in the lab of Peter Atkinson, a professor of entomology and the director of the Center for Disease Vector Research. It has an activity comparable with other transposons already used in clinical trials.

"TcBuster is an active transposon, which means it can excise from and integrate into DNA," Atkinson said. "This is important because it has the ability to move genes into genomes and so can be developed as a genetic tool outside of Tribolium. It has been very difficult to identify active transposons but our ability to do so has increased with the use of bioinformatics tools with which to interrogate the ever expanding genomes that are being sequenced. Insects turn out to be particularly rich sources of active transposable elements. The bioinformatics approach we took enabled us to identify several such transposons."

Atkinson explained that TcBuster transposes at a high frequency, approaching that of the piggyBac and Sleeping Beauty transposons, considered to be the gold standard of transposons used in human gene therapy for delivering beneficial genes to the human gene in order to treat genetic disease.

"There are several clinical trials underway in labs using piggyBac in human gene therapy," he said. "TcBuster's high activity provides a new transposable element tool for this approach to treating some diseases."

Research results were published online, ahead of print, in the Proceedings of the National Academy of Sciences on Oct. 22 and in PLOS ONE earlier this month. Atkinson is a coauthor on both research papers.

Explore further: The origin of the language of life

More information: www.ncbi.nlm.nih.gov/pubmed/23091042 and www.plosone.org/article/info%3… journal.pone.0042666

Related Stories

Mobile MITEs jump to fame in gene regulation

Jun 18, 2012

Moving genetic elements from one location to another in a genome makes for a very dynamic situation in terms of development and disease. An EU project has investigated a special type of micro transposable ...

PiggyBac joins armory in fight against cancer

Oct 14, 2010

Researchers have developed a genetic tool in mice to speed the discovery of novel genes involved in cancer. The system – called PiggyBac – has already been used by the team to identify novel candidate cancer-causing ...

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.