Scientists design new lens with convex and concave functionality, potential to revolutionise optical devices

Nov 14, 2012

Scientists at the University of Birmingham have designed a lens using metamaterials that can function as a convex or a concave lens, according to research published in the journal Nature Communications. By fabricating gold nano-rods on the glass, this new lens can magnify or demagnify objects, just by switching the polarisation of the light source.

The lens has an aperture of 80 micrometers - roughly the size of the cross-section of human hair - and a focal length of 60 micrometers.

Lenses are the key part of imaging systems such as telescopes, microscopes and cameras and are widely used in industry to manufacture . A lens is an important optical component, the core of most , used in cameras, medical imaging, astronomy, and .

The key to designing a conventional lens, which is usually manufactured out of glass or another transparent material, is to make a curved surface. These lenses are either convex - converging light, which magnifies an object, or concave, where light diverges making an object smaller.

However, this new lens is 40 nm thin on a flat . In order to create a dual function lens, which can be switched from convex to concave, the researchers have developed an array of gold nano-structures, which is placed on top of the glass, which enables them to control the propagation of light. Then, by changing the helicity (left or right handed rotation of the electric field) of the light shining through the lens, the same lens can function as a concave or convex lens.

Dr Shuang Zhang, Reader in at the University of Birmingham's School of Physics and Astronomy, and lead investigator, said: 'This new device, our plasmonic metalens, will give greater flexibility in designing and adding new functionalities to optical systems as the focusing properties of the same lens can be altered between a convex lens and a concave lens at your will. Furthermore, the compact size, and the planar nature of the lens could also have an impact on photonic integrated photonic devices.'

Explore further: Precision gas sensor could fit on a chip

More information: DOI: 10.1038/ncomms2207

add to favorites email to friend print save as pdf

Related Stories

Nanowire lens can reconfigure its imaging properties

Oct 11, 2011

(PhysOrg.com) -- By taking advantage of the unique optical properties of nanoscale materials, researchers have designed a lens made of nanowires that can reconfigure its imaging properties without any electronic ...

Engineers give industry a moth's eye view

Nov 26, 2007

When moths fly at night, their eyes need to capture all the light available. To do this, certain species have evolved nanoscopic structures on the surface of their eyes which allow almost no light to reflect off the surface ...

Fresnel lenses: High contrast and efficient focusing

Oct 05, 2012

The first Fresnel lens was installed in 1823 in the Cordouan lighthouse, where its beam was visible for 32 km. Since then, this lens design has been used in lighthouses, traffic lights, automobile headlights, ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

Feb 27, 2015

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

Feb 26, 2015

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.