Scientists design new lens with convex and concave functionality, potential to revolutionise optical devices

Nov 14, 2012

Scientists at the University of Birmingham have designed a lens using metamaterials that can function as a convex or a concave lens, according to research published in the journal Nature Communications. By fabricating gold nano-rods on the glass, this new lens can magnify or demagnify objects, just by switching the polarisation of the light source.

The lens has an aperture of 80 micrometers - roughly the size of the cross-section of human hair - and a focal length of 60 micrometers.

Lenses are the key part of imaging systems such as telescopes, microscopes and cameras and are widely used in industry to manufacture . A lens is an important optical component, the core of most , used in cameras, medical imaging, astronomy, and .

The key to designing a conventional lens, which is usually manufactured out of glass or another transparent material, is to make a curved surface. These lenses are either convex - converging light, which magnifies an object, or concave, where light diverges making an object smaller.

However, this new lens is 40 nm thin on a flat . In order to create a dual function lens, which can be switched from convex to concave, the researchers have developed an array of gold nano-structures, which is placed on top of the glass, which enables them to control the propagation of light. Then, by changing the helicity (left or right handed rotation of the electric field) of the light shining through the lens, the same lens can function as a concave or convex lens.

Dr Shuang Zhang, Reader in at the University of Birmingham's School of Physics and Astronomy, and lead investigator, said: 'This new device, our plasmonic metalens, will give greater flexibility in designing and adding new functionalities to optical systems as the focusing properties of the same lens can be altered between a convex lens and a concave lens at your will. Furthermore, the compact size, and the planar nature of the lens could also have an impact on photonic integrated photonic devices.'

Explore further: The first direct-diode laser bright enough to cut and weld metal

More information: DOI: 10.1038/ncomms2207

add to favorites email to friend print save as pdf

Related Stories

Nanowire lens can reconfigure its imaging properties

Oct 11, 2011

(PhysOrg.com) -- By taking advantage of the unique optical properties of nanoscale materials, researchers have designed a lens made of nanowires that can reconfigure its imaging properties without any electronic ...

Engineers give industry a moth's eye view

Nov 26, 2007

When moths fly at night, their eyes need to capture all the light available. To do this, certain species have evolved nanoscopic structures on the surface of their eyes which allow almost no light to reflect off the surface ...

Fresnel lenses: High contrast and efficient focusing

Oct 05, 2012

The first Fresnel lens was installed in 1823 in the Cordouan lighthouse, where its beam was visible for 32 km. Since then, this lens design has been used in lighthouses, traffic lights, automobile headlights, ...

Recommended for you

Verifying the future of quantum computing

43 minutes ago

Physicists are one step closer to proving the reliability of a quantum computer – a machine which promises to revolutionise the way we trade over the internet and provide new tools to perform powerful simulations.

A transistor-like amplifier for single photons

Jul 29, 2014

Data transmission over long distances usually utilizes optical techniques via glass fibres – this ensures high speed transmission combined with low power dissipation of the signal. For quite some years ...

User comments : 0