Scientists find new way for antibiotic resistance to spread

November 15, 2012

Washington State University researchers have found an unlikely recipe for antibiotic resistant bacteria: Mix cow dung and soil, and add urine infused with metabolized antibiotic. The urine will kill off normal E. coli in the dung-soil mixture. But antibiotic-resistant E. coli will survive in the soil to recolonize in a cow's gut through pasture, forage or bedding.

"I was surprised at how well this works, but it was not a surprise that it could be happening," says Doug Call, a molecular in WSU's Paul G. Allen School for Global . Call led the research with an immunology and infectious disease Ph.D. student, Murugan Subbiah, now a post-doctoral researcher at Texas A & M. Their study appears in a recent issue of the online journal PLOS ONE.

While have dramatically reduced infections in the past 70 years, their widespread and often indiscriminate use has led to the natural selection of drug-resistant microbes. People infected with the organisms have a harder time getting well, with longer hospital stays and a greater likelihood of death.

Animals are a major source of resistant bugs, receiving the bulk of antibiotics sold in the U.S.

The scientists focused on the antibiotic ceftiofur, a cephalosporin believed to be helping drive the proliferation of resistance in bacteria like Salmonella and E. coli. Ceftiofur has little impact on gut bacteria, says Call.

"Given that about 70 percent of the drug is excreted in the urine, this was about the only pathway through which it could exert such a large effect on bacterial populations that can reside in both the gut and the environment," he says.

Until now, conventional thinking held that antibiotic resistance is developed inside the animal, Call says.

"If our work turns out to be broadly applicable, it means that selection for resistance to important drugs like ceftiofur occurs mostly outside of the animals," he says. "This in turn means that it may be possible to develop engineered solutions to interrupt this process. In doing so we would limit the likelihood that will get back to the animals and thereby have a new approach to preserve the utility of these important drugs."

One possible solution would be to find a way to isolate and dispose of residual antibiotic after it is excreted from an animal but before it interacts with soil bacteria.

The WSU experiments were performed in labs using materials from dairy calves. Researchers must now see if the same phenomenon takes place in actual food-animal production systems.

Explore further: Resistant gut bacteria will not go away by themselves

More information: The paper, "Urine from Treated Cattle Drives Selection for Cephalosporin Resistant Escherichia coli in Soil," can be seen at www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0048919

Related Stories

Resistant gut bacteria will not go away by themselves

June 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Small amounts of antibiotics generate big problems

July 22, 2011

New research conducted at Uppsala University shows that extremely low concentrations of antibiotics can enrich for antibiotic resistant bacteria. The research suggests that antibiotic residue introduced to the environment ...

Roads pave the way for the spread of superbugs

September 29, 2011

Antibiotic resistant E. coli was much more prevalent in villages situated along roads than in rural villages located away from roads, which suggests that roads play a major role in the spread or containment of antibiotic ...

Antibiotic-resistant pathogens persist in antibiotic-free pigs

September 17, 2012

(Phys.org)—Researchers from North Carolina State University have found identical strains of antibiotic-resistant Campylobacter coli (C. coli) in both antibiotic-free (ABF) and conventionally raised pigs. This finding may ...

Recommended for you

How the anthrax toxin forms a deadly 'conveyer belt'

September 26, 2016

Researchers have built a three-dimensional map of the anthrax toxin that may explain how it efficiently transfers its lethal components into the cytoplasm of infected cells. The study, "Structure of anthrax lethal toxin prepore ...

Yeast knockouts peel back secrets of cell protein function

September 26, 2016

Proteins are the hammers and tongs of life, with fundamental roles in most of what happens in biology. But biologists still don't know what thousands of proteins do, and how their presence or absence affects the cell.

Discovery may benefit farmers worldwide

September 26, 2016

University of Guelph plant scientists have shown for the first time how an ancient crop teams up with a beneficial microbe to protect against a devastating fungal infection, a discovery that may benefit millions of subsistence ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.