I am SAM

Nov 22, 2012 by Jason Major, Universe Today
Portrait of Curiosity assembled from raw images acquired with MAHLI on Sol 85 (Nov. 11. 2012 UTC) Credit: NASA/JPL-Caltech/Malin Space Science Systems. Credit: Jason Major

Yesterday Mars Science Laboratory principal investigator John Grotzinger set the entire space science world abuzz with a tantalizing promise of "earthshaking" news on the horizon—literally "one for the history books," as he put it in an interview with NPR. It seems one of Curiosity's main science tools, the Sample Analysis at Mars (SAM) instrument, has discovered… something… within recently-gathered samples, possibly in windblown-material scooped at a site called "Rocknest" earlier this month.

For now, though, the MSL team is keeping quiet on any more details until they're reasonably sure they know what they have. Speculations abound—some serious, some not—but the bottom line is we'll all have to wait for the official news to be released. In the meantime, here's your chance to learn a little more about a fascinating high-tech Mars-tasting gadget called SAM.

Annotated photo of SAM with side covers removed.

About the size of a window air conditioning unit, the Sample Analysis at Mars (SAM) instrument is contained within the front section of NASA's Curiosity rover. Actually a suite of three instruments, SAM consists of a Gas Chromatograph (GC), a Quadrupole Mass Spectrometer (QMS), and a Tunable Laser Spectrometer (TLS), as well as systems that manipulate and process samples.

Although mostly contained entirely within Curiosity, SAM does have two small inlet tubes that allow access for soil samples gathered with the rover's arm, as well as inlets for atmospheric gases.

On Earth all of these different instruments would fill a lab. But to fit them all inside the Curiosity, which is about the size of a Mini Cooper (but only half the mass), they were painstakingly reduced in size to fit within a single rectangular structure about 40 kg (88 lbs).

SAM assembly. Credit: NASA/JPL-Caltech

Here's how SAM's components work:

The Gas Chromatograph (GC)

The GC has six complementary chromatographic columns. The GC assembly sorts, measures, and identifies gases it separates from mixtures of gases by pushing the mixed gases through long, coiled tubes with a stream of helium gas. It sorts the gas molecules by weight: they emerge from the tube in order from lightest (out first) to heaviest (out last). Once the gases are sorted, the GC can direct quantities of the separated gases into the QMS or TLS for further analysis.

The Quadrupole Mass Spectrometer (QMS)

The QMS identifies gases by the molecular weight and electrical charge of their ionized states. It fires high-speed electrons at the molecules, breaking them into fragments. It then sorts the fragments by weight with AC and DC electric fields. The spectra generated by the QMS detector uniquely identify the molecules in the gases.

The Tunable Laser Spectrometer (TLS)

The TLS uses absorption of light at specific wavelengths to measure concentrations and isotope ratios of specific chemicals important to life: methane, carbon dioxide, and water vapor. Isotopes are variants of the same element with different atomic weights, and their ratios can provide information about Mars' geologic—and possibly biologic—history.

I am SAM
SAM solid sample inlets. Credit: NASA/JPL-Caltech

The QMS and the GC can operate together in a GCMS mode for separation and definitive identification of organic compounds. The TLS obtains precise isotope ratios for C and O in carbon dioxide and measures trace levels of methane and its carbon isotope.

In addition to these three analytical instruments SAM also has mechanical support devices: a sample manipulation system (SMS) and a Chemical Separation and Processing Laboratory (CSPL). The CSPL includes high conductance and micro valves, gas manifolds with heaters and temperature monitors, chemical and mechanical pumps, carrier gas reservoirs and regulators, pressure monitors, pyrolysis ovens, and chemical scrubbers and getters.

The SMS has a wheel of 74 small cups where soil samples gathered by Curiosity's robotic arm are prepared for analysis. 59 are quartz cups that are small ovens which can be heated to very high temperatures to pull gases from the powdered samples. 9 sealed cups are filled with chemical solvents for lower-temperature experiments designed to search for organic compounds. The other 9 cups contain calibration materials.

With this suite of precision tools SAM is specifically designed to search for evidence of a habitable environment on Mars, whether past or present. As it takes up over half of the rover's scientific payload area, you could say that Curiosity itself is specifically designed to carry SAM around Mars (although we won't tell that to the other instruments!)

Knowing only that the "exciting" news from Grotzinger and his team is coming from data gathered by SAM, one could safely assume that it has something to do with a discovery of organic chemistry of some sort… but we'll all have to wait a few more weeks to know for sure. Still, as that is the primary objective of MSL and Curiosity is barely over 100 Martian days into its mission, even the smallest hint of big news has everyone's attention.

"Like any big institution, NASA would love to trumpet a major finding, especially at a time when budget decisions are being made," Joe Palca, NPR article.

"This data is gonna be one for the history books," said Grotzinger. "It's looking really good." (Read more here.)

Find out more about SAM and Curiosity's other instruments here, and check out a quick video overview of SAM below:

This video is not supported by your browser at this time.

The result of an international effort between scientists and engineers, SAM was built and tested at NASA Goddard Space Flight Center in Greenbelt, Maryland. Paul Mahaffy is SAM's Principal Investigator.

Explore further: Mysteries of space dust revealed

add to favorites email to friend print save as pdf

Related Stories

Has Curiosity made an 'Earth-shaking' discovery?

Nov 21, 2012

The Mars Science Laboratory team has hinted that they might have some big news to share soon. But like good scientists, they are waiting until they verify their results before saying anything definitive. ...

Rover's 'SAM' lab instrument suite tastes soil

Nov 14, 2012

(Phys.org)— A pinch of fine sand and dust became the first solid Martian sample deposited into the biggest instrument on NASA's Mars rover Curiosity: the Sample Analysis at Mars, or SAM.

NASA's Mobile Mars Laboratory almost ready for flight

Oct 08, 2010

The Sample Analysis at Mars (SAM) instrument suite has completed assembly at NASA's Goddard Space Flight Center in Greenbelt, Md., and is nearly ready for a December delivery to NASA's Jet Propulsion Laboratory ...

SAM I am

Dec 06, 2011

The Mars Science Laboratory is on its way to the red planet, and its rover Curiosity should touch down next summer. If the mission hits paydirt and comes across organic material, then one instrument in particular ...

Curiosity rover update: Sniffing Mars' atmosphere

Nov 13, 2012

What has Curiosity been up to lately? The rover's Sample Analysis at Mars (SAM) instruments makes up more than half the science payload on board MSL, and it is now searching for compounds of the element carbon—including ...

Recommended for you

Mysteries of space dust revealed

Aug 29, 2014

The first analysis of space dust collected by a special collector onboard NASA's Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks open a door to studying the origins of the ...

A guide to the 2014 Neptune opposition season

Aug 29, 2014

Never seen Neptune? Now is a good time to try, as the outermost ice giant world reaches opposition this weekend at 14:00 Universal Time (UT) or 10:00 AM EDT on Friday, August 29th. This means that the distant ...

Informing NASA's Asteroid Initiative: A citizen forum

Aug 28, 2014

In its history, the Earth has been repeatedly struck by asteroids, large chunks of rock from space that can cause considerable damage in a collision. Can we—or should we—try to protect Earth from potentially ...

Image: Rosetta's comet looms

Aug 28, 2014

Wow! Rosetta is getting ever-closer to its target comet by the day. This navigation camera shot from Aug. 23 shows that the spacecraft is so close to Comet 67P/Churyumov-Gerasimenko that it's difficult to ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Jonseer
3 / 5 (2) Nov 22, 2012
2 years ago in an article online one of SAM's chief goals was described as finding "organics" on Mars, something that had not yet been found by any of the means we have explored Mars.

So it's a good bet that SAM FOUND ORGANICS ON MARS.

About the only other alternative would be it found past proof life or even less likely that it found living organism or proof of some sort of metabolize that can only be produced by living organisms.
ritwik
5 / 5 (1) Nov 23, 2012
2 years ago in an article online one of SAM's chief goals was described as finding "organics" on Mars, something that had not yet been found by any of the means we have explored Mars.

So it's a good bet that SAM FOUND ORGANICS ON MARS.

About the only other alternative would be it found past proof life or even less likely that it found living organism or proof of some sort of metabolize that can only be produced by living organisms.

presence of methane had been reported on mars way back in 2003 by NASA and a year later an EU satellite

Because methane on Mars would quickly break down due to ultraviolet radiation from the Sun and chemical reactions with other gases, its reported persistent presence in the atmosphere also necessitates the existence of a source to continually replenish the gas

http://en.wikiped...#Methane