Researchers synthesize protein critical to red blood cell production

November 12, 2012
Researchers synthesize protein critical to red blood cell production

(Phys.org)—Researchers in the group of Centennial Professor of Chemistry, Samuel Danishefsky, have synthesized what is arguably the largest and most complex biological molecule ever assembled by the methods of organic chemistry.   The molecule is a version of erythropoietin (EPO), a protein critical to the production of red blood cells in mammals and consisting of a folded chain of 166 amino acids with carbohydrates attached at well-defined sites along the chain.

Professor Danishefsky's group includes researchers at Columbia and in the and Chemistry Program at Sloan-Kettering Institute, where Professor Danishefsky is the incumbent of a Eugene W. Kettering Chair.   His group's work on this project was assisted by enabling advances made by Dr. Xianping Tan of Professor Virginia Cornish's group at Columbia and by Dr. Gong Chen in the Columbia group of Professor Dalibor Sames.

Naturally occurring erythropoietin is actually a highly complex family of molecules, all of which have the same basic and which differ only in the nature of the attached carbohydrates.   The Danishefsky synthesis produces the exact with truncated forms of the carbohydrates attached at the correct locations and with the correct bonding mechanisms.   In vitro experiments demonstrate that the synthesized EPO is capable of stimulating the production of

The Danishefsky effort represents the first time a homogenous form of native EPO containing all of the carbohydrates has been obtained. The ability to create a unique variant of EPO, rather than the mix of EPO structures that occur naturally, is a breakthrough that points to eventual progress at systematically isolating, testing, and understanding the behavior of each variant.     It also provides a path to address a general question that has potential therapeutic significance  — namely, why does nature produce mixtures of proteins with a unique, underlying structure but which vary only in the nature of a small number of attached carbohydrates?

The new synthesis, which was originally reported online in Angewandte Chemie, has subsequently been covered in Science, the Royal Society of Chemistry's Chemistry World, and C & E News and it will also be reported in Nature.  The work is recognized asa breakthrough not only for its success at synthesizing EPO but also for the new techniques developed by the Danishefsky group for fabricating the segments of the EPO structure, for linking them together, and for bonding the carbohydrates at the correct locations.   The work represents an effort by the group that started in 2002.

Explore further: A new way to boost red blood cell numbers

More information: Angew. Chem. Int. Ed. 51, 1 -10, 2012;
Science 338, 28, Oct. 2012;
RSC Chemistry World, Oct. 10, 2012;
C & E News 90, 41, 11, Oct 8, 2012

Related Stories

A new way to boost red blood cell numbers

January 10, 2008

A common treatment for anemia — a deficiency in red blood cells (rbcs) caused by their insufficient production, excessive destruction, or excessive loss — is administration of recombinant erythropoietin (Epo), a hormone ...

Anemia drugs under scrutiny

March 13, 2008

U.S. drug regulators are contemplating further restrictions on the use of drugs to combat anemia in cancer patients.

First successful total synthesis of Erythropoietin

October 15, 2012

(Phys.org)—"Blood is quite a peculiar kind of juice"—that is what Mephisto knew, according to Goethe's "Faust". But if blood really is very special, then erythropoietin (EPO) must be a very special molecule, as it triggers ...

Recommended for you

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.