Transforming noise into mechanical energy at nano level

Nov 22, 2012

A team of researchers at the Freie Universität Berlin, co-ordinated by José Ignacio Pascual, have developed a method that enables efficiently using the random movement of a molecule in order to make a macroscopic-scale lever oscillate. The research was published in Science.

In nature processes such as the movement of fluids, the intensity of , chemical compositions, etc., are subject to which normally are called 'noise'. This noise is a source of energy and its utilisation for undertaking a task is a paradigm that nature has shown to be possible in certain cases.

The research led by José Ignacio Pascual and published in Science, focused on a molecule of (H2). The researchers placed the molecule within a very small space between a and the sharp point of an ultra-sensitive . This microscope used the periodic movement of the point located at the end of a highly sensitive mechanical oscillator in order to 'feel' the forces that exist at a nanoscale level. The molecule of hydrogen moves randomly and chaotically and, when the point of the microscope approaches it, the point hits the molecule, making the oscillator or lever move. But this lever, at the same time, modulates the movement of the molecule, resulting in an orchestrated 'dance' between the point and the 'noisy' molecule. "The result is that the smallest molecule that exists, a molecule of hydrogen, 'pushes' the lever, that has a mass 1019 greater; ten trillion time greater!", explained José Ignacio Pascual.

The underlying principle is a known as Stocastic Resonance which describes how random movements of energy are channelled into periodic movements and, thus, can be harnessed. With this research, it has been shown that this principle is fulfilled at a nanometric scale.

"In our experiment, the 'noise' of the molecule is made by injecting electric current, and not temperature, through the molecule and, thus, functions like an engine converting electric energy into mechanical", stated José Ignacio Pascual. Thus, one of the most promising aspects of this result is that it can be applied to the design of artificial , which are complex molecules designed to be able to oscillate or rotate in only one direction. The authors do not discard, moreover, that this molecular fluctuation can be produced by other sources, such as light, or be carried out with a greater number of molecules, even with different chemical compositions.

Explore further: Protons fuel graphene prospects

More information: Driving a Macroscopic Oscillator with the Stochastic Motion of a Hydrogen Molecule, Science, November 9, 2012. DOI:10.1126/science.1227621

add to favorites email to friend print save as pdf

Related Stories

A molecule that switches on and off

Jun 10, 2011

A single molecule whose charge state and shape can be changed at will: the latest breakthrough at the CEMES should prove a key advantage in the race for miniaturization. In addition to controlling its charge ...

Scientists Image the 'Anatomy' of a Molecule (w/ Video)

Aug 28, 2009

(PhysOrg.com) -- For the first time, IBM researchers in Zurich, Switzerland, have taken a 3D image of an individual molecule. Using an atomic force microscope, the researchers constructed a "force map" of ...

Giving photochemistry a hand

Sep 03, 2005

Making molecules with the right handedness - either a left- or a right-handed arrangement of atomic groupings - is of critical importance to the pharmaceutical industry, as the two different 'handed' forms (called enantiomers) ...

Recommended for you

Protons fuel graphene prospects

10 hours ago

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

Cooling with the coldest matter in the world

Nov 24, 2014

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree ...

Magnetic fields and lasers elicit graphene secret

Nov 24, 2014

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.