Pushing natural light into the heart of buildings

November 30, 2012 by Sandy Evangelista
Credit: 2012 LIPID

(Phys.org)—Through a research project designed at MIT and continued at EPFL, researchers have designed windows that can bring natural light deep into a building. This technology was recently integrated into six floors of an ultra-modern building in Tokyo.

The tragedy of Fukishima has forced Japan to re-think natural resources down to the minutest detail. This problem is reflected in the architecture of buildings and the use of . Norms have evolved particularly in lighting standards for professional spaces. Indeed, it is common to find common space occupied by dozens of people who work with the blinds closed, under artificial lights that are twice the standard European level. Standards are now changing, but for that, it is necessary to integrate new technologies into the design of the buildings that are too deep to be naturally lit by standard windows.

As of this September there are six floors of offices in central Tokyo that have been equipped with complex windows. They were developed by Marilyne Andersen, who heads the Interdisciplinary Laboratory of Performance-Integrated Design (LIPID). The researcher first developed this at MIT, then further at EPFL, where these windows have brought light into the heart of buildings at depths of up to 15 meters.

The system, which is positioned on the top of the glass, must be able to collect and redirect light in the entire room. However, it must prevent the sunrays from descending below the horizontal, to avoid creating glare for occupants. "Following the principal of a standard window size, adequate up to about 6 meters can be achieved. Our techology makes it generally possible to double that depth," explains Marilyne Andersen.

Integrated into the façade

These complex windows integrate two technologies between the two panes of their double-glazing to push and diffuse the light. The first device is composed of a series of aluminum slats fixed parallel to one another. A double parabolic curvature on both sides captures the light and redirects it toward the ceiling. They also act as sun protection and avoid glare by preventing rays from being retransmitted downward. The second mechanism, coupled to the slats, comprises a transparent acrylic cylinder half a centimeter in diameter that uses the distribution of light in the bearing to laterally diffuse it into the room. Finally, a reflective ceiling completes the device. "We chose a ceiling mirror with some granularity to accentuate the lateral diffusion all while maintaining a redirection toward the bottom of the room."

The collaboration between the real estate developer, Hulic, and Marilyne Andersen dates back several years. In particular, Hulic was the industrial partner for Andersen's scientific research on natural light at MIT, which led to the development this innovative, patented system. Its constancy and stability make the device simple, as well as being more discreet and less bulky than most existing solutions.

Explore further: Researchers develop new reversible, green window technology

Related Stories

Researchers develop new reversible, green window technology

March 3, 2009

Ben-Gurion University of the Negev (BGU, Israel) researchers have developed a new, highly energy-efficient window technology, featuring two reversible panes that will save energy all year round in homes and office buildings.

Willis Tower goes solar

March 22, 2011

(PhysOrg.com) -- Do you know the Sears Tower? No, no you don't because for some time now it has been going by the much less famous name of the Willis Tower. While that bit of information may not be news to you, especially ...

Turning windows into powerplants

April 15, 2011

If a new development from labs at MIT pans out as expected, someday the entire surface area of a building’s windows could be used to generate electricity — without interfering with the ability to see through them.

Harnessing natural light, indoors

May 8, 2012

(Phys.org) -- Using the most recent generation windows, architects and lighting designers can to control daylight, directing it where they want within a room. An EPFL laboratory has developed a simulation tool to make access ...

Sharp's solar panels throw posh light on city high-rise

September 27, 2012

(Phys.org)—Yet another eco-conscious announcement from Japan for residents of Japan: Sharp has announced a solar panel of a semi transparent nature for mounting on balcony railings or high-rise windows. These are semi-transparent ...

View Dynamic Glass system goes on public display (w/ Video)

November 14, 2012

(Phys.org)—Another step forward in the electrochromic glass trade is this week's announcement by the Milpitas, California,- company View that its self-tinting window solution, called View Dynamic Glass, is ready for deployment. ...

Recommended for you

Sydney makes its mark with electronic paper traffic signs

July 28, 2015

Visionect, which is in the business of helping companies build electronic paper display products, announced that Sydney has launched e-paper traffic signs. The traffic signage integrates displays from US manufacturer E Ink ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.