Pushing natural light into the heart of buildings

Nov 30, 2012 by Sandy Evangelista
Credit: 2012 LIPID

(Phys.org)—Through a research project designed at MIT and continued at EPFL, researchers have designed windows that can bring natural light deep into a building. This technology was recently integrated into six floors of an ultra-modern building in Tokyo.

The tragedy of Fukishima has forced Japan to re-think natural resources down to the minutest detail. This problem is reflected in the architecture of buildings and the use of . Norms have evolved particularly in lighting standards for professional spaces. Indeed, it is common to find common space occupied by dozens of people who work with the blinds closed, under artificial lights that are twice the standard European level. Standards are now changing, but for that, it is necessary to integrate new technologies into the design of the buildings that are too deep to be naturally lit by standard windows.

As of this September there are six floors of offices in central Tokyo that have been equipped with complex windows. They were developed by Marilyne Andersen, who heads the Interdisciplinary Laboratory of Performance-Integrated Design (LIPID). The researcher first developed this at MIT, then further at EPFL, where these windows have brought light into the heart of buildings at depths of up to 15 meters.

The system, which is positioned on the top of the glass, must be able to collect and redirect light in the entire room. However, it must prevent the sunrays from descending below the horizontal, to avoid creating glare for occupants. "Following the principal of a standard window size, adequate up to about 6 meters can be achieved. Our techology makes it generally possible to double that depth," explains Marilyne Andersen.

Integrated into the façade

These complex windows integrate two technologies between the two panes of their double-glazing to push and diffuse the light. The first device is composed of a series of aluminum slats fixed parallel to one another. A double parabolic curvature on both sides captures the light and redirects it toward the ceiling. They also act as sun protection and avoid glare by preventing rays from being retransmitted downward. The second mechanism, coupled to the slats, comprises a transparent acrylic cylinder half a centimeter in diameter that uses the distribution of light in the bearing to laterally diffuse it into the room. Finally, a reflective ceiling completes the device. "We chose a ceiling mirror with some granularity to accentuate the lateral diffusion all while maintaining a redirection toward the bottom of the room."

The collaboration between the real estate developer, Hulic, and Marilyne Andersen dates back several years. In particular, Hulic was the industrial partner for Andersen's scientific research on natural light at MIT, which led to the development this innovative, patented system. Its constancy and stability make the device simple, as well as being more discreet and less bulky than most existing solutions.

Explore further: Environmentally compatible organic solar cells

add to favorites email to friend print save as pdf

Related Stories

Harnessing natural light, indoors

May 08, 2012

(Phys.org) -- Using the most recent generation windows, architects and lighting designers can to control daylight, directing it where they want within a room. An EPFL laboratory has developed a simulation ...

Sharp's solar panels throw posh light on city high-rise

Sep 27, 2012

(Phys.org)—Yet another eco-conscious announcement from Japan for residents of Japan: Sharp has announced a solar panel of a semi transparent nature for mounting on balcony railings or high-rise windows. ...

Willis Tower goes solar

Mar 22, 2011

(PhysOrg.com) -- Do you know the Sears Tower? No, no you don't because for some time now it has been going by the much less famous name of the Willis Tower. While that bit of information may not be news to ...

Turning windows into powerplants

Apr 15, 2011

If a new development from labs at MIT pans out as expected, someday the entire surface area of a building’s windows could be used to generate electricity — without interfering with the ability to ...

Recommended for you

Environmentally compatible organic solar cells

20 hours ago

Environmentally compatible production methods for organic solar cells from novel materials are in the focus of "MatHero". The new project coordinated by Karlsruhe Institute of Technology (KIT) aims at making ...

Floating nuclear plants could ride out tsunamis

21 hours ago

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

21 hours ago

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...

Ikea buys wind farm in Illinois

Apr 15, 2014

These days, Ikea is assembling more than just furniture. About 150 miles south of Chicago in Vermilion County, Ill., the home goods giant is building a wind farm large enough to ensure that its stores will never have to buy ...

User comments : 0

More news stories

Sony's PlayStation 4 sales top seven million

Sony says it has sold seven million PlayStation 4 worldwide since its launch last year and admitted it can't make them fast enough, in a welcome change of fortune for the Japanese consumer electronics giant.

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...