First mouse, now human, lab-grown eye tissue

Nov 01, 2012
An embryonic eye derived from human embryonic stem cells. Credit: 2012 Elsevier

Producing retinal tissue from human embryonic stem cells is now possible thanks to a team of researchers led by Yoshiki Sasai of the RIKEN Center for Developmental Biology in Kobe, Japan.

Sasai and his colleagues have developed a novel cell culture method in which embryonic stem (ES) cells are grown in suspension instead of on a flat surface. ES cells grown under these conditions can organize themselves into complex three-dimensional structures when they are treated with the appropriate combination of .

Last year, Sasai's team reported that mouse ES cells cultured in this way recapitulate developmental mechanisms and self-organize into a cupped, layered structure that resembles the embryonic eye and contains all the cell types found in the mature retina, including .

In their latest study, the team repeated these experiments using human ES cells, and found major differences in how they form eye-like structures. The structures derived from human ES cells were substantially larger and thicker than those formed by , reflecting the differences in size between the two species. And unlike the structures formed from mouse cells, the human-based structures also had a tendency to curve more at the edges.

Importantly, the human ES cells took significantly longer to form embryonic eyes—more than 100 days compared to just 20 days for mouse cells, presumably reflecting the differences in normal gestation times. This made the experiments technically challenging, because it is difficult to maintain stable cell cultures for periods of longer several weeks.

Sasai and his colleagues noticed, however, that the that grew well during the first month tended to generate well-formed retinal tissue. To keep the cultures stable at this critical stage, they developed a novel cryonic preservation method for storing the tissue at this critical intermediate stage.

The cryopreservation method involves cutting the retinal tissue from the cupped structures after 18 days in culture and then leaving it to continue growing in suspension for another 12 days. The tissue is then briefly cooled on ice before being submerged in liquid nitrogen. Crucially, the tissue can be stored in this state for long periods of time, but remains healthy and continues to grow when thawed later on.

"We now plan to test the functionality by grafting these tissues into animal eyes," says Sasai. "The most straightforward application would be for transplantation to patients suffering from retinitis pigmentosa, in which photoreceptors gradually degenerate, leading to blindness."

Explore further: Researchers produce first atlas of airborne microbes across United States

More information: Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., Saito, K., Yonemura, S., Eiraku, M. & Sasai, Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10, 771–785 (2012). dx.doi.org/10.1016/j.stem.2012.05.009

Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T. & Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011). www.nature.com/nature/journal/v472/n7341/abs/nature09941.html

Related Stories

Replacing faulty neurons

Nov 05, 2010

Researchers from the RIKEN Center for Developmental Biology, Kobe, have shown that neurons called Purkinje cells can not only be generated from embryonic stem (ES) cells, but can also become fully integrated ...

Researchers grow pituitary glands from embryonic stem cells

Nov 10, 2011

(Medical Xpress) -- A new study published in Nature reports that scientists have been able to grow working pituitary glands from embryonic stem cells from mice. When these were transplanted into mice with defects in the pi ...

The beginnings of the brain

May 13, 2011

All of the tissues and organs of the body arise from one of three embryonic precursors: the ectoderm, mesoderm and endoderm. The ectoderm contributes to several tissues, including the nervous system and the ...

Stem cells from patients make 'early retina in a dish'

Jun 16, 2011

(PhysOrg.com) -- Soon, some treatments for blinding eye diseases might be developed and tested using retina-like tissues produced from the patient's own skin, thanks to a series of discoveries reported by ...

Recommended for you

Viral proteins may regulate human embryonic development

18 minutes ago

A fertilized human egg may seem like the ultimate blank slate. But within days of fertilization, the growing mass of cells activates not only human genes but also viral DNA lingering in the human genome from ...

Vascular cells can fuse with themselves

22 hours ago

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. ...

Key element in bacterial immune system discovered

23 hours ago

A University of Otago scientist is a member of an international research team that has made an important discovery about the workings of a bacterial immune system. The finding could lead to the development ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.