Metamaterials and transformation optics control light on a microchip

Nov 26, 2012
Transformation optics devices that perform diverse, simple functions can be integrated together to build complex photonic systems for optical communications, imaging, computing, and sensing. Credit: Qi Wu

Using a combination of the new tools of metamaterials and transformation optics, engineers at Penn State University have developed designs for miniaturized optical devices that can be used in chip-based optical integrated circuits, the equivalent of the integrated electronic circuits that make possible computers and cell phones.

Controlling light on a could, in the short term, improve optical communications and allow sensing of any substance that interacts with . In the medium term, optical integrated circuits for infrared imaging systems are feasible. Further down the road lies high-speed all-. The path forward requires some twists on well-known equations, and the construction of structures smaller than the wavelength of light.

Light bends naturally as it crosses from one material to another, a phenomenon called that can be seen in the way a stick seems to bend in water. Illusions, such as mirages in the desert or the shimmer of water on the road ahead on a hot day, are caused by a difference in the of layers of warmer and cooler air. The new field of transformation optics (TO) uses this light-bending phenomenon in a rigorously mathematical way by applying the 150-year-old Maxwell equations describing the propagation of light onto structures known as , artificial constructs with custom-designed refractive indexes. The most famous applications of metamaterials are and perfect lenses, but those are just the tip of the optical iceberg.

In a paper in a new online journal, Light: Science and Applications, published by Nature Publishing Group, Douglas Werner, professor of electrical engineering, and his post-doc Qi Wu and Ph.D. student Jeremiah Turpin present a for designing practical devices on a single platform using transformation optics. "This field (transformation optics) is in its early stages, so there are many contributions to be made," Werner says. "Our big contribution is in figuring out how to develop TO designs with the simplest material parameters without impacting performance, and linking the devices together to form an on-chip integrated photonic system."

Among their designs are light collimators, which take light from a source and focus it into one or more tightly focused beams, waveguide couplers, which connect different sized waveguides, TO splitters, which divide power from an input waveguide to two or more output waveguides, waveguide crossings, which routes light in compact spaces without loss or crosstalk, and TO benders, which turn the light around corners without loss. These devices are only five to ten microns in size, and therefore many of them could fit on a centimeter-sized chip.

"It has been a joint effort to develop these transformation optics tools and designs," Werner says. "Jeremy wrote the algorithms behind the simulation tools. Qi is developing the designs to be simulated. In order to get the best design for a targeted application, thousands of simulations may have to be performed using powerful optimization techniques developed in our group."

Transformation optics devices that perform diverse, simple functions can be integrated together to build complex photonic systems for , imaging, computing, and sensing, say the authors. The current, non-TO approach is to design each device using different methods and materials that may not be compatible on a single platform. The Werner group's technique, on the other hand, employs graded index metamaterial structures, such as patterned air holes or rods, on a silicon-on-insulator platform that can be easily integrated into on-chip photonic systems, providing broad bandwidth and low losses.

In order to keep their designs grounded in reality, the group works closely with nanofabricators at Penn State's Nanofabrication Laboratory who are themselves developing new approaches to implement the Werner group's designs. All of the designs described in the paper can be realistically built with current fab processes, says Werner. "It's like a CAD tool," he explains, citing the computer-aided design tools used in manufacturing. "We've developed customized simulation and optimization tools for designing . Beyond that," he continues, "TO is flexible enough that it opens up the possibility of creating all sorts of new devices that don't currently exist."

Explore further: 'Dressed' laser aimed at clouds may be key to inducing rain, lightning

More information: Wu, Q., Turpin, J. and Werner, D. Integrated photonic systems based on transformation optics enabled gradient index devices. Light: Science & Applications. DOI: 10.1038/lsa.2012.38

Related Stories

Transformation optics make a U-turn for the better

Jul 01, 2010

(PhysOrg.com) -- Berkeley researchers have combined the scientific fields of transformation optics and plasmonics to demonstrate that with only moderate modifications of the dielectric component of a metamaterial, ...

Recommended for you

Robotics goes micro-scale

Apr 17, 2014

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...